Сделай Сам Свою Работу на 5

Совмещение и экспонирование.





Литография

Позитивные и негативные фоторезисторы.

Негативные резисты активируюется при поглощении энергии в результате облучения. При проявлении пленка негативного резиста разбухает, а его неэкспонированные области с низким молекулярным весом растворяется в проявителе. Этот эффект уменьшает разрешающую способность негативных резистов. Как правило, минимальный разрешаемый размер элемента в три раза больше толщины пленки негативного резиста.

Позитивные резисты, поглощая энергию облучения, становится растворимым в водной среде. Различие в растворимости экспонированных и неэкспонированных участков резиста приводит к проявлению изображения в позитивном резисте. В отличие от негативного резиста проявитель не пропитывает всю пленку и она не набухает. В результате этого разрешающая способность позитивных резистов выше, чем негативных.

 

Сравнение резистов. Негативные резисты, обладая меньшей разрешающей способностью по сравнению с позитивным, имеют более высокую чувствительность (рис. 3) и их использование позволяет экспонировать большее количество пластин в час. Позитивные резисты, хотя и обладают более высокой разрешающей способностью, проявляются значительно медленнее, что приводит к уменьшению производительности и увеличению стоимости ИС. Следовательно, при определении типа используемого резиста необходимо делать выбор между разрешением и производительностью.



Актиночувствительный слой

Актиночувствительным называется слой, который изменяет свои свойства (растворимость, химическую стойкость) под действием актиничного излучения (например, ультрафиолетового света или потока электронов).

Характеристика основных технологических стадий процессов литографии.

( а это вы и без шпаргалок должны помнить наизусть, даже будучи в сильном алкогольном опьянении ;) )

Подготовка поверхности.

Подготовка поверхности к нанесению фотослоя заключается в её обработке парами органического растворителя для растворения жировых плёнок, которые препятствуют последующему сцеплению фоторезиста с поверхностью. Отмывка сверхчистой (деионизованой) водой удаляет следы растворителя; а также микрочастицы, способные впоследствии образовать "проколы" в тонком (1 мкм) слое фоторезиста.



Нанесение фотослоя.

При нанесении фотослоя используется раствор светочувствительного полимера в органическом растворителе (фоторезист). Для получения тонких слоёв фоторезиста на поверхности пластины его вязкость должна быть очень мала, что достигается высоким содержанием растворителя (80-95% по массе). В свою очередь, с уменьшением толщины фотослоя повышается разрешающая способность фотолитографического процесса. Однако, при толщинах менее 0,5 мкм плотность дефектов ("проколов") в фотослое резко возрастает, и защитные свойства фотомаски снижаются.

Нанесение фотослоя может быть выполнено одним из двух способов: центрифугированием или распылением аэрозоля. В случае использования центрифуги дозированное количество фоторезиста подаётся в центр пластины, прижатой вакуумом к вращающейся платформе (центрифуге). Жидкий фоторезист растекается от центра к периферии, а центробежные силы равномерно распределяют его по поверхности пластины, сбрасывая излишки в специальный кожух. Толщина h нанесённой плёнки зависит от скорости вращения платформы, и от вязкости фоторезиста по следующему соотношению:

(1)

где k - коэффициент, устанавливаемый экспериментально.

Скорость вращения центрифуги около 6000 об/мин, толщина фотослоя регулируются подбором соответствующей вязкости, т.е. содержанием растворителя.

Для центрифугирования характерны следующие недостатки:

  1. Трудность получения относительно толстых (в несколько микрометров) и равномерных плёнок из-за плохой растекаемости вязкого фоторезиста.
  2. Напряжённое состояние нанесённой плёнки, что приводит на этапе проявления к релаксации участков фотомаски и изменению их размеров.
  3. Наличие краевого утолщения как следствие повышения вязкости в процессе выравнивания, что ухудшает контакт фотошаблона с фотослоем.
  4. Трудность организации одновременной обработки нескольких пластин.

При распылении аэрозоли фоторезист подаётся из форсунки на пластины, лежащие на столе, совершающем возвратно-поступательное движение. Необходимая толщина формируется постепенно. Отдельные мельчайшие частицы растекаются и, сливаясь, образуют сплошной слой. При следующем проходе частицы приходят на частично просохший слой, несколько растворяя его. Поэтому время обработки, которое зависит от вязкости, расхода и "факела" фоторезиста, от скорости движения стола и расстояния от форсунки до подложки, устанавливается экспериментально. При реверсировании стола крайние пластины получат большую дозу фоторезиста, чем центральные. Во избежание утолщения слоя на крайних пластинах форсунке также сообщается возвратно-поступательное вертикальное движение (синхронно с движением стола). При торможении стола в конце хода форсунка поднимается вверх и плотность потока частиц в плоскости пластин снижается.



Распыление аэрозоли лишено недостатков центрифугирования, допускает групповую обработку пластин, но предъявляет более жёсткие требования к чистоте (отсутствие пыли) окружающей атмосферы. Нанесение фоторезиста и последующая сушка фотослоя являются весьма ответственными операциями, в значительной степени определяющими процент выхода годных микросхем.

Пылевидные частицы из окружающего воздуха могут проникать в наносимый слой и создавать микродефекты. Нанесение фотослоя должно выполнятся в условиях высокой обеспыленности в рабочих объёмах (боксах, скафандрах) 1 класса с соблюдением следующей нормы: в 1 литре воздуха должно содержатся не более четырёх частиц размером не более 0,5 мкм.

При сушке нанесённого слоя в слое могут сохраниться пузырьки растворителя, а при выходе на поверхность слоя они могут образовать микротрещины. Поэтому сушка выполняется с помощью источников инфракрасного излучения, для которого фоторезист является прозрачным, а, следовательно, поглощение излучения с выделением тепла происходит на границе "пластина - фоторезист". Следовательно, сушка протекает от нижних слоёв фоторезиста к верхним, обеспечивая свободное испарение растворителя. Во избежание преждевременной полимеризации (задубления) фоторезиста и потери им чувствительности температура сушки должна быть умеренной (100÷120°С).

Перечисленные виды дефектов фотослоя (пылевидные частицы, микропузырьки и микротрещины) сохраняются в фотомаске и наследуются оксидной маской, создавая в ней микроотверстия. При использовании оксидной маски для избирательного легирования примесь будет проникать через них, образуя легированные микрообласти и, как следствие, токи утечки и пробои в p-n-переходах. Если оксидная маска представляет собой слой контактных окон, то металл, проникая в микроотверстия, может привести к паразитным связям между областями и коротким замыканиям.

Первая сушка проводитсяпри температурах 80 - 90°С заканчивает формирование слоя фоторезиста.

Совмещение и экспонирование.

Под совмещением перед экспонированием понимается точная ориентация фотошаблона относительно пластины, при которой элементы очередного топологического слоя (на фотошаблоне) занимают положение относительно элементов предыдущего слоя (в пластине), предписанное разработчиком топологии. Например, фотошаблон, несущий рисунок эмиттерных областей должен быть точно ориентирован относительно пластины, в которой уже сформированы базовые области.

Процесс совмещения включает три этапа (рис. 2,а):

  1. Предварительная ориентация по базовому срезу, обеспечивающую на границах модулей групповой пластины наивыгоднейшую кристаллографическую плоскость с точки зрения качества разделения пластины на отдельные кристаллы.
  2. Предварительное грубое совмещение по границам крайних модулей, имеющее целью исключить разворот пластины и фотошаблона относительно вертикальной оси Z.
  3. Точное совмещение, исключающее смещение рисунков фотошаблона и пластины по осям X и Y.

Для точного совмещения используют специальные знаки совмещения с контролируемым зазором, которые входят в состав топологических рисунков соответствующих слоёв. Совмещение считается выполненным, если при введении одного знака внутрь другого по всему контуру просматривается зазор.

Номинальным зазором называется равномерный по всему контуру зазор, который образуется при номинальных (проектируемых) размерах знаков и их точном совмещения (центрировании). Из рис. 2,б следует, что

(2)

где dmin=200/Г - предельное разрешение системы "глаз - микроскоп" (200 мкм - линейное разрешение нормального глаза; Г - кратность увеличения микроскопа); Dи- абсолютная предельная погрешность фиксации изображения на установке совмещения и экспонирования; Dш и Dп- абсолютная предельная погрешность размера знака соответственно на шаблоне и пластине (Dш <Dп);

Таким образом, в зависимости от фактических значений случайных погрешностей, реальный зазор может колебаться в пределах от dmax до dmin, а абсолютная предельная погрешность совмещения Dс для контролируемого модуля групповой пластины:

(3)

Для совокупности модулей в партии групповых пластин:

(4)

где Dt - абсолютная предельная погрешность шага расположения модулей на групповом фотошаблоне; Dдоб- дополнительное расширение зазора, которое может предусматриваться для снижения зрительного напряжения оператора.

Погрешность совмещения учитывается при расчёте размеров областей каждого слоя. Обычно фотошаблон очередного слоя совмещается с предыдущим слоем, уже сформированном на пластине. В частности, слой контактных окон совмещается с эмиттерным слоем, а слой металлизации - со слоем контактных окон. Поскольку контактные окна и металлические контакты формируются одновременно для всех областей структуры, погрешность совмещения накапливается. Поэтому совершенствование процессов литографии (уменьшение Dш и Dп) и применяемого оборудования (Dи и Dt) является важной и постоянной задачей.

После выполнения совмещения микроскоп отводится, а на его место подводится осветитель, жёстко связанный с микроскопом на каретке (или поворотной турели). Оператор включает осветитель одновременно с реле времени, которое контролирует время экспонирования.

Проявление.

Проявление скрытого изображения для негативных фоторезистов заключается в обработке фотослоя органическим растворителем. При этом участки, не подвергшиеся облучению, растворяются, а облучённые участки, где при поглощении ультрафиолетового излучения происходит разрыв межатомных связей и перестройка структуры (фотополимеризация), сохраняются.

В позитивных фоторезистах на участках, подвергшихся облучению, происходит разрушение структуры (деструкция) с образованием кислоты. Для перевода её в растворимые слои применяют раствор неорганического соединения со щелочными свойствами (KOH, NaOH и др).

После отмывки от следов проявителя и сушки полученную фотомаску подвергают тепловому задубливанию (120÷180°С в зависимости от марки фоторезиста), в результате чего окончательно формируются её защитные свойства. От характера изменения температуры во время сушки зависит точность передачи размеров изображений. Резкий нагрев вызывает оплывание краев, поэтому для точной передачи малых (1 - 2 мкм) размеров следует применять плавное или ступенчатое повышение температуры. Примерный режим сушки позитивного резиста ФП-383: 10 - 15 минут при комнатной температуре, 20 - 25 минут в термостате при 120 °С, затем переключение термостата и нагревание до 150 - 160 °С.

Травление.

Долгие годы для проведения травления использовались различные влажные химические процессы, которые имеют очень высокую селективность и с успехом используются при изготовлении микросхем с размерами микронного масштаба. Однако при травлении линий с субмикронным разрешением и одновременно с высоким отношением высоты линии к ее ширине влажные процессы перестают работать. Можно выделить следующие причины, лимитирующие применение влажных процессов.

1. Размер рисунка не может быть меньше 2 мкм.

2. Влажное травление – изотропный процесс, что приводит к формированию рисунка с наклонными стенками.

3. Влажное травление требует многоступенчатой промывки и сушки.

4. Используемые химикаты, как правило, сильноядовиты и токсичны.

5. Влажные процессы вносят дополнительные загрязнения.

Химический состав и концентрация травителя в растворе подбирается так, чтобы поверхностный слой растворялся активно, а нижележащий не растворялся.

В процессе травления имеют место отвод продуктов химической реакции от поверхности в раствор и подвод из раствора свежего травителя. В мелких элементах массообмен затруднён и скорость травления ниже, чем в крупных элементах. Поскольку технологическое время травления устанавливают по самому мелкому элементу, более крупные элементы получают "перетрав", т.е. большие погрешности размера. Для повышения точности травления, т.е. уменьшения разброса размеров элементов из-за растрава, необходимо динамическое воздействие травителя на обрабатываемую поверхность.

Существенное повышение точности травления достигается при использовании "сухих" методов травления, при которых разрушение слоя происходит механически за счёт бомбардировки потоком заряженных частиц.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.