Сделай Сам Свою Работу на 5

Electronic Properties and Applications of Carbon Nanotubes





Министерство образования и науки Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного

Учреждения высшего профессионального образования

«Московский государственный технический

Университет имени Н.Э. Баумана»

Кафедра лингвистики СЭ5-КФ

 

СМОЛОВИЧ С.Ф.

Области применения нанотехнологий

Учебный практикум

По курсу иностранного (английского) языка

для студентов направления подготовки 280302

«Наноинженерия»

Под редакцией Бойко В.В.

Калуга


УДК 42

ББК 81.2

C 58

 

Данный учебный практикум «Области применения нанотехнологий» издается в соответствии с методическим планом работы секции английского языка кафедры лингвистики КФ МГТУ им. Баумана.

 

Учебный практикум «Области применения нанотехнологий» рассмотрен и одобрен:

кафедрой "Лингвистика" (СЭ5-КФ)

" ____ " _________ 2014 г.

Протокол № ___

Зав. кафедрой СЭ5- КФ ___________________ Н.К. Власко

 

 

Методической комиссией факультета СЭК

" ____ " _________ 2014 г.

Протокол № ___

Председатель методической комиссии ____________________ О.А. Артеменко



 

Методической комиссией факультета Электроники, информатики и управления

" ____ " _________ 2014 г.

Протокол № ___

Председатель методической комиссии ____________________ М.Ю. Адкин

 

 

Методической комиссией Калужского филиала МГТУ им. Н.Э. Баумана

" ____ " _________ 2014 г.

Протокол № ___

Председатель методической комиссии____________________ О.Л. Перерва

 

Рецензенты:

 

зав. каф. «Иностранные языки»

КФ ФГОБУ ВПО «Финансовый университет

при Правительстве РФ»

к. п. н, доцент Клименко Е.В.

 

Автор: преподаватель кафедры лингвистика СЭ5-КФ

Смолович С.Ф.

 

 

Настоящий учебный практикум предназначен для студентов направления подготовки «Наноинженерия». Его цель – совершенствование навыков чтения иноязычной литературы (английский язык) по специальности. Задания данного практикума предполагают аудиторную работу студентов под контролем и при участии преподавателя. Возможна также самостоятельная работа студентов.

 

Калужский филиал МГТУ им. Н.Э. Баумана, 2014 г.

Смолович С.Ф., 2014 г.




Содержание

 

Введение…………………………………………………………………………………….стр.4

Unit 1. Electronic Properties and Application of Nanotubes……………………………….стр.5

Unit 2.Electron Beam Writing in Nanoparticle Films……………………………………...стр.10

Unit 3. Single Electron Transistor………………………………………………………..…стр.16

Список литературы………………………………………………………………………...стр.21


ВВЕДЕНИЕ

 

Целью данного учебного практикума является совершенствование умений и навыков ознакомительного и изучающего чтения английских текстов по направлению подготовки – «Наноинженерия». Практикум предназначен для занятий студентов данного направления в 6 семестре.

При составлении данного учебного пособия были использованы фрагменты статей из английских научных журналов по данной специальности.

Задания настоящего учебного практикума предусматривают:

· формирование терминологического словаря по специальности студента;

· закрепление типичных для языка грамматических структур;

· выделение основных трудностей перевода терминологии научных текстов по специальности;

· обучение студентов работе со словарями по специальности;

· обучение аннотированию и реферированию.

Работу с текстами данного учебного практикума предпочтительнее проводить в аудитории под руководством преподавателя, но возможно её выполнение и внеаудиторно.

Выполнение в аудитории заданий на перевод, подстановку пропущенных вместо точек терминов, подбор определения к термину осуществляется в устной или в письменной форме по рекомендации преподавателя. Если работа выполняется внеаудиторно, то все эти задания предпочтительно выполнить в письменной форме.



Актуальность данного учебного практикума обусловлена повышением значимости владения иностранным языком в качестве средства обмена и распространения информации в мировом научном сообществе.


UNIT 1

 

Read and translate the text and learn terms from the Essential Vocabulary:

Electronic Properties and Applications of Carbon Nanotubes

The interest in organic, that is, carbon based compounds as electronically and optically active materials has increased with an accelerating pace since the 1970s. With the emergence of the nanotechnology frontier in research, single organic molecules were often the focus of interest. With the discovery of the fullerene (C60) in 1986 and especially the carbon nanotubes, all-carbon molecules are receiving a larger portion of the interest. Carbon nanotubes were discovered in 1991 by Sumio Iijima at the NEC laboratories in Japan rather accidentally during his TEM studies of fullerene material synthesized in an arc-discharge between graphite electrodes. Although the interest in the fullerene molecule had been substantial, there were no widespread expectations of tubular extensions of the

molecule. The carbon nanotube consists of one or multiple concentric shells of seamless graphite sheets. A single wall nanotube (SWNT) has a diameter of around

1 nm, while the multiwalled nanotube (MWNT) may have any diameter in the range of 2–100 nm, with 10–20 nm being typical. Single nanotubes, even SWNTs, with lengths approaching 1 mm have been observed, giving astonishing aspect ratios (length/diameter). The typical length, however, is about 1 _m. There are various methods to produce nanotubes, some of which are related to the production of carbon fibers, an activity that well predates the discovery of the carbon nanotube. After the discovery, old research material on carbon fibers was given a second look, and indeed some old TEM images do show nanotubes. Some methods of synthesis are especially developed with applications of molecular-level electronics in mind.

Carbon nanotubes have several interesting physical and chemical properties that have attained much attention from both the basic and applied science communities. Depending on the wrapping angle of the graphite sheet, an individual nanotube can be either metallic or semiconducting. The charge carriers in nanotubes of all sizes are truly delocalized. Ballistic conduction over _m-sized distances have been measured in carbon nanotubes. The axial Young’s modulus of an individual nanotube sheet is approximated by the in-plane modulus of graphite , which makes the carbon nanotube one of the stiffest materials that exists. A single carbon nanotube is an excellent freestanding electrical conductor. Chemically, the nanotube is perfectly stable in ambient conditions. In a vacuum, it can withstand temperatures far above 1000 _C without structural changes. These properties

make it the ideal one-dimensional system. For technological applications, the major drawback is perhaps the insufficient control over the synthesis process. Presently the wrapping angle of the graphitic wall of the nanotube, which determines the electrical properties, can not be predetermined by the synthesicist. Nevertheless, the number of possible applications that have been forwarded within just ten years from the surprising discovery of the first nanotubes is substantial. Some of these already have been taken quite far toward realization (e.g., field emission displays), which is certainly promising for the future of the carbon nanotube. The electronic properties of carbon nanotube are dependent on the geometry of the tube. A sheet of graphite can be wrapped in many different ways to make the wall of a carbon nanotube. There are three different types of nanotubes: (a) the armchair, (b) the zigzag, and (c) the chiral nanotube. The smallest nanotube reported to date has a diameter of only 4 Е. Since increasing the curvature of the graphite wall increases the strain energy, this is also predicted to be the smallest possible diameter a nanotube can have. Typical diameters for SWNTs are between 1 and 2 nm.

Nanowires have a wide range of applications in electronic systems, for example as interconnect wires in field-effect transistors, resonators, nanomagnets, and spintronic systems. Nanowires are also critical components used in the design of nanoelectromechanical systems (NEMSs), where they have applications as interconnects in circuits and sensors to detect chemical or biological agents. A considerable challenge is the successful integration of these types of nanotechnology into larger scale systems with multiple platforms of integration, so that the nanosystems can interact with the macroscale world. Microscale electrical systems are a logical choice as the first platform for integration of nanosystems, because they are the closest to the nanosystem length scale among current manufactured electronic products. This makes microsystems the best candidate as a platform for integration and a link for controlled interaction with the macroscale world. The successful integration of nanosystems into microscale electronics depends on stable material properties that are reliable for at least a 10-year life cycle (with greater than a trillion cycles of operation). However, most nanoscale systems fabricated to date are prone to material instabilities (for example, oxidation of surfaces or agglomeration of quantum dots or carbon nanofibers) that negatively affect their usefulness. There has been much research in the area of modeling and characterization of surface properties and crystalline structure of metallic nanowires and how these properties influence their electrical properties.

 

 

Essential Vocabulary:

сompound соединение (химическое)

TEM (transmission electron microscopy) просвечивающая электронная

микроскопия

arc discharge дуговой разряд

shell оболочка (электронная в атоме)

aspect ratio соотношение геометрических

размеров

basic science фундаментальная наука

applied science прикладная наука

charge carrier носитель заряда

young’s modulus модуль Юнга,

модуль упругости

ambient (окружающая ) среда

field emission автоэмиссия,

автоэлектронная эмиссия

chiral киральный

NEMS (nanoelectromechanical systems) наноэлектромеханические

системы

chemical agent реагент, реактив

agglomeration агломерация, скопление

 

Exercise 1. Answer the following questions:

1. What compounds can be called organic?

2. What caused interest in single organic molecules?

3. When and by whom were carbon nanotubes discovered?

4. How were they discovered?

5. What does carbon nanotube consist of?

6. What is the oldest method of producing nanotubes?

7. What are the most interesting physical and chemical properties of carbon nanotubes?

8. What is the major drawback for technological applications of carbon nanotubes?

9. What are possible applications of carbon nanotubes?

10. What are three types of nanotubes in terms of geometry of the tube?

11. What are the applications of nanowires in electronic systems?

12. How can nanosystems interact with the macroscale world?

 

 

Exercise 2. Read and translate the following international words:

 

Accelerate, process, portion, fabricate, method, characterization, structure, synthesize, graphite, multiple, diameter, typical, physical, chemical, axial, vacuum, control, integration, realization, electrode, concentric, metallic, production.

 

Exercise 3. Match each word with its definition:

 

1. Fullerene a. a substance that contains atoms of two or more chemical elements held together by chemical bonds

2. Strain b. of or relating to the immediate surroundings

3. Agglomerate c. to deform or be deformed as a result of a stress

4. Compound d. any of various carbon molecules with a polyhedral

structure similar to that of Buckminster fullerene, such

as C70, C76, and C84

5. To contaminate e. to form or be formed into a mass or cluster; collect

 

Exercise 4. Fill in the blanks using terms given below:

The ternary metal … represent a rich class of fascinating … , because of their potential technological utilities . The metal nitrides have a wide range of applications due to distinctive … such as strong hardness, chemical … to corrosion, high … , high electrical and thermal … , and unique electronic properties . In the recent years, there has been a lot of reports on ternary nitrides in the form of thin … , multilayers, single … , polycrystalline, and nanocrystalline … . However, nitrides are relatively less stable as compared to … because of the low … temperature of nitrides owing to the high … energy of nitrogen . In the last decade, extensive research has been carried out on the intermetallic ternary … nitrides like Fe3Mo3N and Ni3Mo3N . These nitrides relate to the g-carbide type structure.

 

Terms:powders, nitrides, decomposition, bond, resistance, transition metal, melting point, conductivities, films, crystals, oxides, compounds, properties.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.