Сделай Сам Свою Работу на 5

Процессы всасывания и нагнетания жидкости в поршневом насосе





При неустановившемся движении жидкости за поршнем, который движется с переменной скоростью, по длине хода изменяется давление.

Для практики важно знать, какие факторы влияют на величину давления и каково его наименьшее значение в процессе всасывания.

Рассмотрим насосную установку (рисунок 6.18), состоящую из поршневого, приводного насоса, перекачивающего жидкость из приемного бака 2 в напорный бак 3. Обозначим: давление окружающей среды р0, давление в цилиндре насоса в процессе всасывания рв, нагнетания рн, длину и диаметр (площадь сечения) подводящего и , напорного и трубопроводов, геометрическую высоту всасывания Нв- нагнетания НН, скорость поршня V, скорость жидкости во всасывающем и напорном трубопроводах VB, VH.

 

Рисунок 6.18

 

Составим уравнение баланса удельной энергии (уравнение Бернулли) для неустановившегося движения потока жидкости в процессе всасывания для сечений от свободной поверхности приемного бака 2 до оси насоса 1, приняв за плоскость сравнения свободную поверхность в баке:

,

где - гидравлические потери напора в подводящем трубопроводе;

- инерциальный напор, возникающий при неустановившемся движении жидкости.



Известно, что гидравлические потери напора состоят из потерь по длине и местных сопротивлений в трубопроводе (поворотах, запорных устройствах, фильтрах и др.), а именно:

.

Учитывая, что все местные сопротивления можно заметить эквивалентной им длиной трубы, а скорости в трубопроводе скоростью поршня, пользуясь уравнением неразрывности можно написать

,

где - расчетная длина трубопровода.

Потери в клапане зависят от его конструкции и степени открытия. В момент открытия потери имеют максимум , а затем снижаются и сохраняют приблизительно постоянное значение по длине хода.

Инерционный напор можно оценить из следующих соображений: если масса жидкости, следующей за поршнем, равна массе жидкости в трубопроводе , а ускорение из условия неразрывности , то сила инерции составит

.

Тогда инерционный напор при всасывании равен

.

Таким образом, уравнение Бернулли для неустановившегося движения жидкости в процессе всасывания приобретает следующий вид:



.

Пьезометрический напор в цилиндре насоса в процессе всасывания (будем называть его напором всасывания) составит

.

Напор всасывания всегда ниже напора на свободной поверхности приемного бака и зависит от геометрической высоты всасывания НВ, размеров подводящего трубопровода, сопротивления клапана насоса и числа двойных ходов поршня n, определяющих скорость и ускорение поршня.

Для определения напора в цилиндре насоса в процессе нагнетания составим уравнение Бернулли для сечений, проходящих через ось насоса (плоскость сравнения), и относительно свободной поверхности напорного бака 3 (рисунок 6.18):

.

Воспользовавшись всеми вышеприведенными разъяснениями для процесса всасывания, аналогично получаем напор нагнетания

.

 

 

Напор в процессе нагнетания представляет собой сумму пьезометрического напора на свободной поверхности жидкости в напорном баке инерционного напора, потерь напора на все виды сопротивлений в клапанах и напорном трубопроводе и геометрической высоты нагнетания. Так как напор в цилиндре насоса зависит от скорости и ускорения поршня, то, очевидно, он имеет переменное значение по длине его хода.

 

33. Графическое представление изменения напоров в цилиндре насоса

Чтобы выяснить, как изменяется напор в цилиндре насоса в процессе всасывания и нагнетания по длине хода поршня, выразим скорость и ускорение через путь, проходимый поршнем х :

,

откуда и, следовательно, .

Тогда , .

Уравнение для определения напора всасывания, с учетом отмеченного, принимает вид

.

Обозначим комплексы постоянных величин у составляющих, зависящих от х, через А и В.



.

 

Изменение напора всасывания от х представим в таблице 6.2

 

Таблица 6.2

x
const const max B
0,5r - - const 0,75A 0,5B
R - - - A
1,5r - - - 0,75A -0,5B
2r - - - -B

По данным таблицы 6.2 построим зависимости составляющих напора всасывания от длины хода поршня (S=2r), а затем, сложив ординаты слагаемых, получим график изменения напора всасывания по длине хода поршня, как это показано на рисунке 6.19.

Из графика видно, что процесс всасываний происходит при переменном напоре . В начале хода поршня напор , так как в это время имеют место и наибольшие потери в клапане и наибольший инерционный напор .

Рисунок 6.19

 

Аналогично рассмотрим уравнение для определения напора нагнетания в зависимости от положения, проводимого поршнем х.

Обозначим комплексы постоянных величин у составляющих, зависящих от х, через А¢ и В¢.

.

Изменение напора нагнетания от х представим в таблице 6.3. По данным таблицы 6.3 построим графики, характеризующее изменение напора нагнетания по длине хода поршня.

Таблица 6.3

x
const const max
0,5r - - const 0,75A¢
R - - -
1,5r - - - 0,75A¢
2r - - -

Из графика (рисунок 6.20) получаем: напор нагнетания имеет переменное значение по длине хода поршня, наибольшее значение он имеет в начале хода, что объясняется большими потерями в нагнетательных клапанах и большим инерционным напором. В конце хода поршня напор нагнетания уменьшается, так как инерционный напор меняет знак и в это время может произойти отрыв жидкости от поршня (если ) с последующим гидравлическим ударом.

Рисунок 6.20

 

34.Теоретический цикл работы поршневого насоса

Совместим графики напоров всасывания (рисунок 6.19) и нагнетания (рисунок 6.20) и представим их в координатах р -V, где объем рабочей камеры V пропорционален длине хода поршня (V=FS). В результате получаем замкнутую диаграмму, которая представляет собой зависимость давления в цилиндре в процессе всасывания и нагнетания.

Рисунок 6.21

График изменения давления в цилиндре за одну пару ходов поршня, полученный расчетным путем, называется теоретической индикаторной диаграммой и имеет вид, показанный на рисунке 6.21.

Работа, совершаемая поршнем в процессе всасывания жидкости:

.

Работа, совершаемая поршнем, в процессе нагнетания:

Следовательно, работа, совершаемая поршнем за один цикл:

.

Полученный интеграл равен площади диаграммы abсd и представляет собой работу теоретического цикла насоса. Высота диаграммы называется индикаторным давлением. Практически важно, чтобы индикаторное давление по длине хода поршня было одинаково, так как от этого давления зависят выбор мощности двигателя и прочность деталей насоса.

 

35. Условия нормальной работы поршневого насоса

Главным условием нормальной работы насоса является неотрывное движение жидкости за поршнем, а это будет в том случае, если напор всасывания будет величиной положительной и превышающей упругость насыщенных паров перекачиваемой жидкости, а именно:

Учитывая, что напор всасывания насоса имеет минимальное значение в начале хода поршня (рисунок 6.19) при S=0 и V=0, важными факторами, определяющими нормальную работу насоса, будут геометрическая высота всасывания Нв и число двойных ходов поршня n, на которые можно воздействовать при монтаже и выборе двигателя.

Критическая высота всасывания определяется из условия равенства нулю гидравлических потерь и скоростного напора при V=0 и , тогда из уравнения Бернулли для процесса всасывания имеем

.

Допускаемая высота всасывания должна быть меньше критической:

.

Предельное число двойных ходов поршня определяется при тех же условиях: V=0, pВ=Pt; если расшифровать :

Если насос откачивает воду при нормальных условиях (р0=105 Па, t=200С), то допускаемая высота всасывания приблизительно равна 5-6 м.

Для обеспечения нормальной работы поршневого насоса необходимо иметь:

1) наименьшую геометрическую высоту всасывания и возможно короче подводящий трубопровод с малым числом местных сопротивлений;

2) при перекачке легко испаряющихся жидкостей возможность работы насоса с подпором;

3) при больших значениях инерционного напора возможность уменьшить число двойных ходов поршня или установить гасители инерционного напора - пневмокомпенсаторы.

 

 

36. Процессы всасывания и нагнетания с пневмокомпенсаторами

Изучение процессов всасывания и нагнетания в поршневом насосе показывает, что движение жидкости является неустановившимся. Неустановившееся движение жидкости сопровождается возникновением инерционных сил, для преодоления которых требуется дополнительная энергия, что обеспечивается мощностью двигателя, приводящего в действие насос.

Как было установлено в разделе 6.5, инерционный напор зависит от длины трубопровода, а именно, на всасывании и на нагнетании .

Таким образом, уменьшение длины трубопровода приведет к снижению величины инерционного напора. С этой целью устанавливаются пневмокомпенсаторы - воздушные колпаки на всасывании и на нагнетании в непосредственной близости от насоса (рисунок 6.22). Насосная установка состоит из насоса 3 с воздушными колпаками 2 и 4, подводящего трубопровода , соединяющего насос с приемным баком 1, и напорного трубопровода , соединяющего насос с приемным баком 5. Пневмокомпенсатор - это емкость, частично заполненная воздухом или газом, который служит упругим амортизатором, уменьшающим неравномерность движения жидкости в напорном и всасывающем трубопроводам.

Рисунок 6.22

В процессе всасывания жидкость поступает в рабочую камеру из пневмокомпенсатора (колпака) 2 через короткую трубку При этом давление в колпаке 2 снижается и жидкость устремляется из приемного бака 1 в колпак 2.

В процессе нагнетания поршень нагнетает жидкость в колпак 4. Под давлением нагнетаемой жидкости воздух в колпаке 4 сжимается, и в период всасывания, когда жидкость не поступает в колпак 4, сжатый воздух вытесняет жидкость из колпака в напорный трубопровод.

При достаточном объеме пневмокомпенсаторов (воздушных колпаков), несмотря на колебания величины объема в разные моменты хода поршня (скорость поршня меняется от нуля до максимума и снова до нуля), колебания уровня жидкости в колпаках как на всасывании, так и на нагнетании будут незначительными и движение в трубопроводах от бака 1 до колпака 2 и от колпака 4 до напорного бака 5 будет близко к установившемуся.

Следовательно, пневмокомпенсаторы (при достаточно большом объеме воздуха) способствуют непрерывному движению жидкости по трубопроводам с практически постоянной скоростью.

Инерционный напор возникает только на очень коротком участке от колпака 2 до насоса и от насоса до колпака 4. Инерционные напоры на этих участках весьма малы и ими можно пренебречь.

Одновременно уменьшаются и гидравлические потери в подводящем и напорном трубопроводах, так как жидкость движется в них с практически постоянной средней скоростью.

Уравнение Бернулли для насоса с колпаками можно записать следующим образом: со стороны всасывания - от свободной поверхности в баке 1 до колпака 2:

;

от свободной поверхности в колпаке 2 до оси насоса

;

напор всасывания составляет

.

Co стороны нагнетания — от оси насоса до свободной поверхности в колпаке 4

От свободной поверхности в колпаке 4 до свободной поверхности в баке 5 ,

то есть напор нагнетания равен

.

Влияние переменных величин на всасывании и на нагнетании на напоры всасывания и нагнетания ввиду их малости длин незначительно.

Индикаторная диаграмма изменения давления в цилиндре насоса с пневмокомпенсаторами имеет вид, показанный на рисунке 6.23.

Рисунок 6.23

Индикаторное давление по длине хода поршня можно считать постоянным, так как давление в процессе всасывания и нагнетания остается практически постоянным. Только в начале всасывания отмечается понижение давления и в начале нагнетания - повышение давления, что объясняется более высоким сопротивлением клапанов при страгивании.

Наличие пневмокомпенсаторов устраняет опасность разрыва сплошности потока в напорном трубопроводе, позволяет уменьшить напор нагнетания жидкости, увеличить число двойных ходов поршня.

 

37. Расчет пневмокомпенсаторов

Наглядно представить значение пневмокомпенсатора (колпака) на нагнетании можно, если показать, как изменяется напор в трубопроводе в зависимости от подачи насоса. На рисунке 6.24 в координатах H-q показано, что при отсутствии колпака напор в трубопроводе изменяется по пунктирной линии от нуля до НМАХ, а при наличии колпака напор незначительно отклоняется от среднего значения , так как движение жидкости в трубе почти равномерное. Это выравнивание происходит за счет периодического изменения объема воздуха (газа) в колпаке, который сжимается при нагнетании жидкости поршнем, и расширяется в период, когда подачи нет.

Рисунок 6.24

При этом в колпаке воздушная подушка изменяет свой объем от до , что соответственно вызывает колебания давлений воздуха; от рмах до Pmin.

Считая процесс изменения состояния воздуха в колпаке изотермическим, запишем .

Со стороны нагнетания от оси насоса до свободной поверхности в

баке 4:

От свободной поверхности в колпаке 4 до свободной поверхности в

баке 5:

,то есть напор нагнетания равен

.

Влияние переменных величин на всасывании и на нагнетании на напоры всасывания и нагнетания ввиду их малости длин незначительно.

Индикаторная диаграмма изменения давления в цилиндре насоса с пневмокомпенсаторами имеет вид, показанный на рисунке 6.23.

Индикаторное давление по длине хода поршня можно считать постоянным, т.к. давление в процессе всасывания и нагнетания остается практически постоянным. Только в начале всасывания отмечается понижение давления и в начале нагнетания – повышение давления, что объясняется более высоким сопротивлением клапанов при страгивании.

Наличие пневмокомпенсаторов устраняет опасность разрыва сплошности потока в напорном трубопроводе, позволяет уменьшить напор нагнетания жидкости , увеличить число двойных ходов поршня.

или .

По правилам пропорции получим:

,

;

среднее давление

;

средний объем воздуха можно записать

.

Поскольку обычно представляет интерес не абсолютное значение изменения давлений в колпаке, а относительная величина колебания давления, то выражение в левой части уравнения называется степенью неравномерности давления в воздушном колпаке (пневмокомпенсаторе) и обозначается .

Средний объем воздуха (газа) в колпаке можно определить, задаваясь степенью неравномерности давления .

Так, из графика подачи насоса (рисунок 6.24) видно, что заштрихованная часть синусоиды мгновенной подачи представляет собой избыточный объем жидкости, которая должна накапливаться в колпаке за ход нагнетания, чтобы восполнить недостаток или отсутствие подачи насоса за ход всасывания, для обеспечения равномерной подачи после колпака. Этот избыточный объем жидкости соответствует объему воздуха в колпаке в пределах его колебания

.

Обозначим - угол поворота кривошипа, при котором начинается заполнение колпака избытком жидкости, подаваемой насосом, – конец заполнения.

Для определения избыточного объема жидкости в колпаке составим уравнение

,

где - мгновенная подача насоса,

- средняя подача.

Зная, что , ,

получаем ;

после интегрирования .

Из условия dV=0 определяется угол

,

так как , ,

угол .

Следовательно, .

Коэффициент 0,55 получен для однопоршневого насоса одностороннего действия. Обозначим этот коэффициент через k.

Тогда для насоса с любым числом рабочих камер избыточный объем равен .

Средний объем воздуха в колпаке определяют, задаваясь коэффициентом неравномерности давления . Чем меньше коэффициент неравномерности, тем меньше колебаний уровня жидкости.

.

Объем воздуха определяется при рабочем давлении. Если давление нагнетается высокое, то напорные колпаки необходимо заполнять сжатым воздухом (газом) тогда средний объем воздуха будет равен

,

где рср - среднее давление, при котором работает насос;

- давление предварительного сжатия воздуха (газа).

В таблице 6.4 приводятся сведения об объемах воздуха в колпаках для насосов с различным числом рабочих камер.

Таблица 6.4

Объем Число рабочих камер насоса
одна две три четыре
Избыточный объем 0,55FS 0,21FS 0,009FS 0,042FS
Средний объем воздуха при =0,025 22FS 9FS 0,5FS 2FS

 

Обычно воздушный колпак на одну треть объема заполнен жидкостью, поэтому его объем приближенно принимают равным 1,5Vср.

Приведенный расчет является приближенным, так как не учитывались значение коэффициента подачи, влияние изменения высоты уровня жидкости в колпаке на давление за поршнем, влияние переменного давления на скорость движения жидкости в трубопроводе. Последнее обстоятельство приводит к нарушению равномерного движения в трубах и может быть причиной нарастания амплитуды колебаний до опасной величины в результате явления резонанса.

Для нормальной работы насоса и напорного колпака должно выполняться условие, при котором число собственных колебаний столба жидкости в напорном трубопроводе не совпадает или не является кратным числу двойных ходов поршня в секунду.

 

38. 11 Мощность и КПД поршневого насоса

Рисунок 6.25

Мощность, потребляемая насосом NДВ, расходуется на полезную мощность Nn и потери мощности на утечки через неплотности ∆NY, на гидравлические сопротивления в клапанах, каналах насоса и участках трубопроводов до мест установки приборов давления ∆NГ, на механическое трение ∆Nмех уплотнениях, опорах, кривошипно-шатунном механизме, редукторе и др. (см.рисунок 6.25).

.

Полезная мощность равна

где Q, р, Н - подача, давление, напор, замеряемые соответственно расходомером, манометром М на нагнетании и мановакуумметром МВ на всасывании насоса с учетом их установки, а именно:

,

где р0 - давление окружающей среды;

(zH -zB) – расстояние между центрами тяжести установки приборов давления.

Если воспользоваться индикаторной диаграммой изменения давления в цилиндре, полученной расчетным или опытным путем (рисунок 6.23 или 6.27), то, определив среднее индикаторное давление, можно найти работу, совершаемую поршнем:

.

Тогда индикаторная мощность насоса определится

,

где F,S,n - площадь, длина хода и число двойных ходов поршня в секунду.

Так как идеальная подача однопоршневого насоса одностороннего действия

QТ= FSn, то индикаторная мощность такого насоса составит

.

Для насосов, имеющих много рабочих камер, индикаторная мощность определяется для каждой камеры отдельно и суммируется.

Важным показателем работы насоса является его КПД, который характеризует насос с точки зрения его конструкции, состояния, качества изготовления деталей и условий эксплуатации. Это есть отношение полезной мощности и потребляемой:

Если сравнить мощность полезную с индикаторной, то получим индикаторный КПД, дающий оценку эффективности работы гидравлической части насоса:

Известно, что потери мощности на утечки можно оценить объемным коэффициентом (коэффициентом подачи):

а потери мощности на гидравлические сопротивления - гидравлическим КПД:

поэтому индикаторный КПД равен

Сравнение индикаторной мощности с потребляемом позволяет оценить влияние механических потерь мощности, т.е. определить механический КПД

Таким образом, КПД насоса — это произведение индикаторного КПД на механический:

.

КПД поршневых насосов обычно составляет 0,6-0,85, нижний предел относится к малым насосам, более высокие КПД имеют насосы больших размеров.

При выборе двигателя для приводных насосов учитываются потери мощности в передаче между двигателем и насосом, в самом двигателе, а также возможные перегрузки при отклонениях режима работы насоса от расчетного (коэффициент запаса выбирается для малых насосов 1.2 ÷1.5, а для больших —1.1 ÷1.5).

.

 

39. Испытание поршневого насоса

Испытание насоса производится с целью определения затрат мощности в отдельных частях насоса.

При испытании снимаются индикаторная диаграмма, показания мановакуумметра на всасывании и манометра на нагнетании, расходомера и по электроприборам фиксируется мощность, потребляемая двигателем.

Наибольший интерес представляет индикаторная диаграмма, по которой можно выявить неисправности, возникающие в гидравлической части насоса.

Для слияния диаграмм можно воспользоваться механическим индикатором давления.

 

Рисунок 6.26

На рисунке 6.26 представлена принципиальная схема механического индикатора, установленного на цилиндре насоса. Индикатор состоит из барабана 1, на который надевается бумага, и гидроцилиндра 2, присоединяемого к цилиндру насоса 4 через кран 3. При открытии крана давление из полости цилиндра насоса передается в гидроцилиндр индикатора, вызывая перемещение поршня последнего. Поршень индикатора на своем штоке имеет тарированную на определенное давление пружину 5 с рычагом, на конце которой крепится карандаш 6. Барабан тягой 7 соединен с одной из деталей насоса, движущейся возвратно-поступательно (шток 8), что приводит к возвратно-поступательному движению барабана, соответствующему ходу поршня.

На бумаге барабана прочерчиваются линии, равные или пропорциональные длине хода поршня при атмосферном давлении Р0 при открытом ранее З΄ и закрытом кране З и линии давления за два хода поршня РВ и РН при открытом кране З и закрытом кране З΄. Полученная таким путем индикаторная диаграмма имеет вид (рисунок 6.27), где рв, рн, рi - давления всасывания, нагнетания и индикаторное; fD — площадь диаграммы; l— длина диаграммы, равная или пропорциональная длине хода поршня S.

Рисунок 6.27

Чтобы определить среднеиндикаторное давление по диаграмме, надо знать постоянную пружины индикатора - масштаб диаграммы пo высоте т (мм=1кгс/см2).

.

На индикаторной диаграмме, полученной при испытании насоса в начале всасывания и нагнетания, фиксируется и т.п. неоднократные колебания клапанов, что вызывается изменением их гидравлического сопротивления при подъеме с седла и последующим свободным движением; при значительных давлениях линии подъема и падения давления не строго вертикальны из-за сжимаемости жидкости и выделения из нее пузырьков газа.

По виду индикаторной диаграммы можно установить различные неисправности в работе насоса. На рисунке 6.28 показаны диаграммы при работе насоса с различными неисправностями: 1 - насос вместе с жидкостью всасывает воздух, который сжимает по линии “a” в начале процесса нагнетания; 2 - в цилиндре имеется воздушный мешок, который сжимается по линии- “a” в начале процесса нагнетания и расширяется по линии “в” в начале процесса всасывания; 3 – пропускает всасывающий клапан; 4 – пропускает нагнетательный клапан; 5 – недостаточный (отсутствует) объем воздушной подушки пневмокомпенсаторов.

 

40. Рабочие характеристики поршневых насосов

Характеристикой насоса называется графическая зависимость давления (напора), мощности; от подачи при постоянном и переменном числе оборотов.

Подача поршневого насоса определенных размеров при неизменном числе оборотов имеет постоянное значение. Давление, создаваемое насосом, теоретически не ограничено, его предельное значение зависит от прочности деталей насоса и от мощности двигателя, который приводит в действие насос. Таким образом, характеристика p-QТ поршневого насоса представляет прямую линию, параллельную оси ординат.

Учитывая, что с увеличением давления действительная подача уменьшается за счет увеличения утечек ∆Qу через неплотности, характеристика p—Q приобретает вид, обозначенный пунктиром на рисунке 6.29.

Зависимость полезной мощности от подачи, давления и числа оборотов вытекает из выражения (z -число рабочих камер насоса)

.

Обозначим: .

Тогда уравнение полезной мощности примет вид

,

т.е. характеристики Nn от Q, p, n представляют собой прямые (считая ŋ0 =const), как это показано на рисунке 6.30.

Рисунок 6.29 Рисунок 6.30

При работе насоса на заданный трубопровод необходимо характеристику насоса совместить с гидравлической характеристикой трубопровода, которая описывается уравнением

где ∆z - разность отметок начала и конца трубопровода;

Σh - суммарные гидравлические потери в подводящем и напорном трубопроводах, зависящие от подачи Q.

Точка пересечения характеристики насоса и трубопровода называется рабочей точкой, указывающей, с какой подачей и давлением работает поршневой насос.

 

 

41. 14 Регулирование подачи поршневых насосов

Регулирование подачи поршневых насосов необходимо как на длительный период работы, так и кратковременно.

При регулировании подачи пользуются различными способами: воздействием на привод насоса, воздействием на его коммуникации либо изменением конструктивных размеров насоса.

Из формулы подачи насоса Q=FSnzŋ0 следует, что изменять подачу можно изменением числа рабочих камер z, изменением диаметра D или длины хода поршня S, переходом на другое число ходов n. Также можно изменить подачу, влияя на объемный коэффициент ŋ0, главным образом на его составляющую – коэффициент наполнения.

Число рабочих камер можно изменить путем снятия всасывающих клапанов с одной из камер.

Замена цилиндровых втулок в комплекте с поршнями большого диаметра на меньший применяется при увеличении давления насоса. Этот способ широко используется при бурении скважин, когда увеличение глубины бурения требует преодоления насосом гидравлических сопротивлений с сохранением установленной мощности.

Изменение длины хода поршня достигается перестановкой пальца кривошипа. Этот способ широко используется при глубинно-насосной добыче нефти на станках - качалках.

Регулирование подачи изменением числа двойных ходов поршня требует установки между двигателем насосом различных редукторов (коробки перемены скоростей, турбопередачи) либо применения специальных многоскоростных двигателей.

Во всех случаях характеристики насосов будут иметь вид, показанный на рисунке 6.31. Если построить на рабочих характеристиках p-Q насоса гидравлическую характеристику трубопровода, то на пересечениях кривых получим различные рабочие точки А1, А2, АЗ и т.д.

Все перечисленные способы обеспечивают ступенчатое регулирование.

Рисунок 6.31

 

Способ присоединения к цилиндру насоса емкости, заполненной сжатым воздухом, позволяет осуществить непрерывное регулирование, если обеспечить изменение давления в емкости в пределах от давления всасывания до давления нагнетания.

а б

Рисунок 6.32

На рисунке 6.32, а представлена схема цилиндра насоса с воздушной емкостью давления, в которой равно или больше давления всасывания. Индикаторная диаграмма (рисунок 6.32,б) показывает, что если давление ре = рв, то цилиндр будет заполняться жидкостью полностью, и поршень в процессе нагнетания будет вытеснять объем V. При давлении воздуха ре > рв поршень проходит некоторый путь, освобождая объем V-V΄ для снижения давления воздуха до давления всасывания. Следовательно, объем жидкости V', поступающий в цилиндр в процессе всасывания, уменьшается и пропорционально снижается подача насоса за счет уменьшения степени наполнения цилиндра.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.