Сделай Сам Свою Работу на 5

Квантовая физика нейтринных осцилляций





Н.Г. Гончарова, Э.И. Кэбин

Осцилляции нейтрино

Начало XXI века стало временем сенсационных открытий в области физики нейтрино. Полученные к настоящему времени результаты инициируют дальнейшие экспериментальные и теоретические исследования свойств нейтрино в двух главных направлениях:

  1. Изучение характеристик нейтрино сверхвысоких энергий как единственных частиц, которые могут дать науке сведения об отдаленных областях нашей Вселенной.
  2. Изучение взаимопревращений нейтрино разных ароматов - т.н.« осцилляции» нейтрино.

Данная статья посвящена изложению основных результатов, достигнутых на этом втором направлении исследований.
Нейтрино относятся к фундаментальным фермионам (см. таблицу) Все указанные в таблице частицы имеют спин J/ћ. Двенадцати фундаментальным фермионам соответствует 12 фундаментальных антифермионов.

  поколения Q/e заряд
лептоны νе νμ ντ
e- μ τ -1
кварки u c t +2/3
d s b -1/3

Установлено существование трех сортов нейтрино, отличающихся квантовым числом «аромат (flavor)». Им соответствуют три сорта антинейтрино. Названия разных нейтрино происходит из наименований их заряженных «напарников» по группе лептонов: электрона, мюона и тау-лептона, массы покоя которых, соответственно, 0.511 MeV, 106 MeV и 1777 MeV.
В 1930 г Вольфганг Паули предположил, что непрерывный характер спектра электронов β-распада может быть объяснен тем, что вместе с электроном при β-распаде вылетает не имеющая заряда частица с полуцелым спином, которая не регистрируется обычными детекторами. Изучение β-спектров показало, что масса этой частицы должна быть очень малой – много меньше массы электрона. (Название этой частицы –нейтрино=”нейтрончик” принадлежит Э. Ферми и было введено в 1932 году после открытия нейтрона).
Первое экспериментальное подтверждение существования нейтрино было получено путем измерения кинетической энергии ядра Li, образующихся в процессе захвата электрона ядром бериллия:



7Be + e-7Li + νe.

Среди многих проблем, связанных с физикой нейтрино, особое внимание привлекала проблема массы нейтрино (антинейтрино).
Изучение формы спектров β-распада позволяло утверждать, что масса нейтрино очень мала, причем оценка этой величины с годами все более понижалась. Исследования велись для тех распадов, где суммарная энергия электрона и антинейтрино (или позитрона и нейтрино) мала. Таким распадом является распад трития:



Как доказано различие свойств нейтрино и антинейтрино? Солнце (как и другие звезды) является источником электронных нейтрино благодаря реакции синтеза дейтронов:

p + p → d + e+ + νe.

Любой ядерный реактор является мощным источником электронных антинейтрино, возникающих при распадах нейтронов:

n → p + e- + e.

Попытки Р. Дэвиса регистрировать нейтрино от ядерного реактора с помощью реакции
e + 17Cl → 17Ar + e- не увенчались успехом. Так было экспериментально доказано, что нейтрино и антинейтрино разные частицы.
В большой серии экспериментов, проведенных Р. Дэвисом, исследовалась интенсивность протекания реакции e + 17Cl → 17Ar + e- инициированной потоком нейтрино, рожденных на Солнце. Эксперименты Дэвиса, которые проводились в течение 30 лет, показали, что величина измеряемого потока солнечных нейтрино значительно меньше, чем должна быть по модели Солнца [1]. Измерения потоков электронных нейтрино от Солнца, проведенные на других установках, также неизменно показывали их дефицит.
Возможным объяснением этого явления является превращение одного сорта нейтрино в другие – т.н. осцилляции нейтрино. Впервые идея об осцилляциях нейтрино была высказана Б.М. Понтекорво.
Различие нейтрино (и антинейтрино) разных ароматов проявляется в реакциях, в которых участвует нейтрино. Различие реакций, вызываемых лептонами с разными ароматами, побудило к введению трех различных квантовых чисел, называемых «лептонными зарядами»: Le, Lμ, Lτ. Лептоны первого поколения (см. таблицу) имеют лептонный заряд Le= 1, Lμ= Lτ = 0, второгоLe = 0, Lμ = 1, Lτ = 0, третьего Le = Lμ = 0, Lτ =1. Знаки лептонных зарядов античастиц противоположны знакам частиц. До установления осцилляций нейтрино как экспериментального факта считалось, что эти квантовые числа сохраняются во всех реакциях. Например, в распаде π+ → μ+ + νμ пион, не имеющий лептонного заряда, распадается на положительный мюон с Lμ = –1 и мюонное нейтрино νμ с Lμ = +1. Таким образом, лептонный заряд в распаде сохраняется. В распадах мюонов
μ+ → e+ + νe + μ также сохраняются лептонные заряды. Действительно, лептонный заряд положительного мюона равен Lμ = –1 также, как мюонного антинейтрино. Электронные лептонные заряды позитрона и электронного нейтрино равны по модулю и противоположны по знаку. Эти факты приводили к выводу о существовании точных законов сохранения каждого из «сортов» лептонных зарядов по отдельности. Экспериментальным подтверждением гипотезы о точном сохранении каждого их типов лептонных зарядов по отдельности являлись и проводившиеся на ускорителях опыты по поиску распадов мюонов на электрон (позитрон) и γ-квант: μ- → e- + γ,
μ+ → e+ + γ. Тот факт, что эти распады не были обнаружены, объясняется проявлением закона сохранения лептонных зарядов.
Однако наблюдение нейтринных осцилляций – т.е. превращений нейтрино одного аромата в нейтрино другого аромата доказывает, что эти законы сохранения могут нарушаться. Осцилляции нейтрино – а их существование уже доказано – ведут к еще одному интересному следствию: нейтрино, указанные в таблице фундаментальных фермионов, не имеют жестко определенной массы! Характеризующие их волновые функции являются суперпозициями волновых функций частиц с определенными массами, а осцилляции являются проявлением квантово-волновой природы этих частиц. (Следует напомнить, что физика частиц уже сталкивалась с аналогичным явлением при исследованиях распадов нейтральных К-мезонов). Рассмотрим на упрощенном примере квантовую физику нейтринных осцилляций.



Квантовая физика нейтринных осцилляций

Если лептонные числа Le, Lμ, Lτ не являются абсолютно сохраняющимися квантовыми числами, и если нейтрино имеют не нулевые, а конечные массы, то возможно превращение нейтрино одного «поколения» в нейтрино другого «поколения». Этот процесс может быть описан в рамках квантовой физики как осцилляции нейтрино (см. например [2]).
Рассмотрим процесс нейтринных осцилляций для двух нейтрино: электронного и мюонного. (Обобщение на три типа нейтрино будет слишком громоздким). Волновые функции электронного и мюонного нейтрино являются функциями времени и подчиняются уравнению Шредингера:

(1)
(2)

Взаимопревращение нейтрино возможно в случае, если в полном гамильтониане присутствует член Hint , ответственный за смешивание разных нейтрино.
Введем волновые функции ν1(t), ν2(t) нейтринных состояний, для которых матрица оператора Гамильтона в (1) является диагональной:

(3)

Переход от нейтринных состояний ν1(t), ν2(t) к νe(t), νμ(t) и обратно осуществляется унитарной матрицей, которую удобно представить через cos θ и sin θ угла θ, который в дальнейшем будет называться «углом смешивания»:

(4)
(5)

Если угол смешивания равен 0, смешивание отсутствует и ν1(t), ν2(t) совпадают с νe(t), νμ(t). (Аналогичная ситуация возникает при θ = π/2 – но ν1(t), ν2(t) при этом совпадают, соответственно, с νμ(t), νe(t)).
Рассмотрим ситуацию, когда в начальный момент времени присутствуют нейтрино только одного типа, например, электронные νμ(t) = 0; νe(t) = 1. Тогда из (4) следует, что ν1(0) = cos θ; ν2(0) = sin θ.
Согласно уравнению (3)

(6)

Изменение во времени интенсивности потока электронных нейтрино равно

(7)

(В преобразовании (7) использованы тригонометрические соотношения: )
Из (7) получаем интенсивность потока электронных нейтрино как функцию времени:

(8)

Интенсивность возникающих за счет осцилляций мюонных нейтрино или, иными словами, вероятность обнаружения таких нейтрино в потоке, в начальный момент состоящем лишь из электронных нейтрино,

(9)

(Расчет вероятности обнаружения электронных нейтрино в пучке, первично состоящем из мюонных нейтрино, проводится точно так же и дает такой же результат.)
Таким образом, вероятность осцилляций нейтрино зависит от трех аргументов:

1) от угла смешивания, связанного с величиной гамильтониана взаимодействия Hint;

2) от величины разности

(10)

3) от времени, прошедшего с момента рождения того или иного типа нейтрино.

Рассмотрим влияние каждого из аргументов на нейтринные осцилляции:

1. Смешивание нейтринных волновых функций максимально при θ = π/4, поскольку int ~ sin 2θ.

2. При выводе формулы (10) использован тот факт, что масса нейтрино много меньше его кинетической энергии. Формула для полной энергии частицы E = (p2c2 + m2c4)1/2в системе ћ = c = 1 выглядит как E = (p2 + m2)1/2. При условии m << p

Условиеm << p соответствует «почти релятивистской» кинематике нейтрино. При этом импульсы разных нейтрино совпадают и E2 – E1 = m2/2p

При совпадении масс, т.е. при , осцилляции отсутствуют.

3. Величина определяет аргумент второго из множителей формулы (9).Обычно эту величину представляют так, чтобы использовать значения энергии нейтрино (Eν) в МэВ, значения Δm2 в (эВ)2 , а расстояния до источника нейтрино (L) – в метрах (м). Используя константу конверсии

ћc = 197 МэВ·Фм ≡ 1.97·10-7 эВ·м = 1; 1эВ = 107/1.97 м,

получим для

(11)

Таким образом, если разность масс «первичных» нейтрино мала, заметные результаты по исследованию осцилляций могут быть достигнуты, только если длина L велика. Это особенно важно, если энергии нейтрино велики.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.