Сделай Сам Свою Работу на 5

Ориентация коллагеновых структур





В пластинчатой костной ткани коллагеновые волокна имеют строго ориентированное направление: продольное — в центральной части пластинок, поперечное и под углом — в периферической, благодаря чему достигается прочность костной ткани.

В сухожилиях коллаген образует плотные параллельные волокна, которые дают возможность этим структурам выдерживать большие механические нагрузки.

В хрящевом матриксе коллаген образует фибриллярную сеть, которая придаёт хрящу прочность.

В роговице глаза коллаген участвует в образовании гексагональных решёток десцеметовых мембран, что обеспечивает прозрачность роговицы, а также участие этих структур в преломлении световых лучей.

В дерме фибриллы коллагена формируют сеть, особенно хорошо развитую в участках кожи, которые испытывают сильное давление (кожа подошв, локтей, ладоней).

Регуляция синтеза коллагена

Синтез коллагена стимулируют половые гормоны, аскорбиновая кислота (а также синтез протеогликанов и пролиферацию фибробластов).

Синтез коллагена тормозят глюкокортикоиды (путём снижения уровня мРНК проколлагена и ингибированием активности пролил-и лизилгидроксилазы), сам коллаген и N-пpoпептиды после своего отщепления.



Патологии образования коллагена

При дефиците витамина С нарушается гидроксилирование пролина и лизина, и образуются менее прочные коллагеновые волокна. В результате развивается цинга, при которой наблюдаются: повышенная хрупкость и ломкость кровеносных сосудов, множественные точечные кровоизлияний под кожу и слизистые оболочки, кровоточивость дёсен, выпадение зубов, анемия.

При снижении активности проколлагенпептидаз (синдром Элерса-Данло-Русакова, тип VII) концевые пропептиды проколлагена не отщепляются, нарушается образование тропоколлагена и образование нормальных коллагеновых волокон. Клинически это проявляется малым ростом, искривлением позвоночника, привычными вывихами суставов, высокой растяжимостью кожи.

При снижении активности лизилоксидазы, при недостатке меди, витаминов РР, В6 нарушается образование поперечных сшивок и, снижается прочность и упругость коллагеновых волокон. Такие структуры, как кожа, сухожилия, кровеносные сосуды, становятся хрупкими, легко разрываются.



Также существует ряд наследственных заболеваний, связанных с нарушением структуры или синтеза коллагена. Основная причина — мутации в генах коллагена, которые широко представлены в разных хромосомах.

При многих заболеваниях наблюдают не только костно-суставную патологию или изменения со стороны кожи, но и ярко выраженные висцеральные проявления: поражения кишечника, почек, лёгких, сердца, сосудов.

Тип колла­гена Ген Локализация коллагена в тканях Заболевания Причина Клинические проявления
I COL1A1 COL1A2 Кости, кожа, связки, сухожилия, склера, роговица, строма внутренних органов Несовер­шенный остеогенез Мутации в генах (более 160). Самая неблаго­приятная — замена глицина на другую АК, в резуль­тате чего в проколлагена появляется перелом или изгиб, и нормальная тройная спираль не образуется Повышенная ломкость костей, аномалии зубов, треугольная форма лица, гиперподвижность суставов, голубые склеры
II COL2A1 Хрящи, межпозво­ночные диски, стекловидное тело Болезнь Книста Деления в гене, которая приводит к синтезу укороченных цепей коллагена Укорочение и дефор­мации конечностей, туго-подвижность суставов, кифосколиоз, миопия высокой степени
Синдром Стиклера и Вагнера Образование терминиру­ющего кодона, вследст­вие чего в стекловидном теле синтезируется поло­вина молекулы коллагена Прогрессирующая миопия, часто отслойка сетчатки; патология сус­тавов по типу хроничес­кого остеоартрита
III COL3A1 Кожа, сосуды, строма паренхима­тозных органов, матка Синдром Элерса-Данло - Русакова, IV тип Мутации в гене (более 20). Синтезируется молекула коллагена с нарушением первичной структуры, которая отли­чается сниженной ста­бильностью. Фибриллы тоньше нормальных и менее организованы Спонтанные разрывы крупных сосудов, перфорации кишечника, разрывы беременной матки, спонтанный пневмоторакс
IV COL4A3-COL4A6 Вязальные мембраны (почки и легкие) Синдром Альпорта Мутации в генах, которые сопровождаются нарушением образования базальных мембран Преимущественное пора­жение почек, прояв­ляющееся гематурией и протеинурией; при
Синдром Гудпасчера Образование антител к молекулам коллагена IV типа временно развивается диффузный эзофагеаль-ный лейомиоматоз (до­брокачественная опухоль гладких мышц пищевода). Гломерулонефрит, лёгочный гемосидероз
VII COL7A1 Кожа Буллёзный эпидермолиз Мутации в гене, приводящие к снижению общего количества «заякоренных» фибрилл в коже, а также синтез дефектных фибрилл Эпидермис слабо связан с дермой, легко слущивается и образует пузыри (буллы), которые легко травмируются, и на их месте образуются эрозии

 



Катаболизм коллагена

Разрушение коллагеновых волокон осуществляется активными формами кислорода и ферментативно (гидролитически) коллагеназами тканевыми и бактериальными.

Тканевая коллагеназа содержит Zn2+, имеет 4 изоформы, синтезируется фибробластами и макрофагами соединительной ткани.

Тканевая коллагеназа разрезает тройную спираль коллагена на расстоянии около ¼ от С-конца, между глицином и лейцином (изолейцином). Образующиеся фрагменты водорастворимы, они спонтанно распадаются на отдельные цепи, которые гидролизуются различными протеазами до АК.

Тканевую коллагеназу активируют плазмин, калликреин и катепсин В. Чувствительность коллагена к действию коллагеназы и неспецифических протеаз повышает недостаточное гидроксилирование остатков пролина и лизина.

Нарушение распада коллагена ведет к фиброзу органов и тканей (в основном печени и легких).

Диагностика скорости распада коллагена

В результате распада коллагена в крови и моче появляется свободный гидроксипролин. Большая часть этой аминокислоты катаболизируется под действием фермента гидроксипролиноксидазы, а часть её выводится с мочой, и поэтому гидроксипролин является маркерной аминокислотой, по которой судят о скорости распада коллагена.

При некоторых заболеваниях, связанных с поражением соединительной ткани, экскреция гидроксипролина увеличивается вследствие ускоренного распада коллагена. Это наблюдается при болезни Педжета, гиперпаратиреозе, коллагенозах, некоторых инфекционных заболеваниях. При нарушении катаболизма гидроксипролина, причиной которого обычно выступает дефект фермента гидроксипролиноксидазы, выделение гидроксипролина может превышать 1 г/сут.

 

Особенности обмена коллагена

Коллаген относятся к медленно обменивающимся белкам, его Т½ составляет недели или месяцы.

У молодых людей обмен коллагена протекает быстрее, с возрастом он заметно снижается, так как при старении увеличивается количество поперечных сшивок, что затрудняет работу коллагеназы. Поэтому, у молодых людей в возрасте 10—20 лет содержание гидроксипролина в моче может достигать 200 мг/сут, то с возрастом экскреция гидроксипролина снижается до 15—20 мг/сут.

Синтез коллагена заметно увеличивается, когда фибробласты мигрируют в заживающую рану и начинают активно синтезировать в этой области основные компоненты межклеточного матрикса. При этом, на месте раны образуется соединительнотканный рубец, содержащего большое количество хаотично расположенных фибрилл коллагена.

 

ЭЛАСТИН

Эластин — основной белок эластических во­локон, которые в больших количествах содер­жатся в межклеточном веществе кожи, стенок кровеносных сосудов, связках, лёгких. Эти ткани могут растягиваться в несколь­ко раз по сравнению с исходной длиной, со­храняя при этом высокую прочность на разрыв.

Строение эластина

Эластин — гликопротеин с молекулярной массой 70 кД.

Первичная структура эластина образована полипептидной цепью из 800 АК, в которой преобладают глицин, валин, аланин, содержится много пролина и лизина, немного гидроксипролина, отсутствует гидроксилизин.

Большое количество гидрофобных радикалов препятствует созданию регулярной вторичной и третичной структуры эластина, поэтому он приобретает различные конформации.

В межклеточном пространстве молекулы эла­стина образуют волокна и слои, в которых от­дельные пептидные цепи связаны множеством жёстких поперечных сшивок в разветвлённую сеть. Сшивки между ос­татками лизина двух, трёх или четырёх пептидных цепей, образуют специфические структуры, которые называются десмозинами (десмозин или изодесмозин).

Десмозины образуются следующим образом: вначале 3 остатка лизина окисляются до альдегидов, а затем про­исходит их соединение с четвёртым остатком лизина с образованием замещённого пириди­нового кольца. Окисление остатков лизина в альдегиды осуществляется лизилоксидазой (РР, В6, Cu2+).

Кроме десмозинов, в образовании попереч­ных сшивок может участвовать лизиннорлейцин, который образуется двумя остатками лизина.

Наличие ковалентных сшивок между пептид­ными цепочками с неупорядоченной, случайной конформацией позволяет всей сети волокон эла­стина растягиваться и сжиматься в разных на­правлениях, придавая соответствующим тканям свойство эластичности.

Синтез эластина

Эластин синтезируется фибробластами в виде растворимого мономера - «тропоэластина». В межклеточном пространстве после образования поперечных сшивок эластин приобретает свою конечную внеклеточную форму, которая характеризуется нерастворимостью, высокой стабильностью и очень низкой скоростью обмена.

Нарушения структуры эластина и их послед­ствия

Снижение активности лизилоксидазы, вызванное дефицитом меди, пиридоксина или дефицит лизилоксидазы, связанный с генетическим дефектом, приводит к снижению или прекращению образования десмозинов. В результате поперечных сшивок нет или их недостаточное количество. При этом, у эластических тка­ней снижается предел прочности на разрыв, появляются такие нарушения, как истончённость, вялость и растяжимость. Клинически эти нарушения могут проявляться кардиоваскулярными изменениями (аневризмы и разрывы аорты, дефекты клапанов сердца), частыми пневмониями и эмфиземой лёгких.

Катаболизм эластина

Катаболизм эластина происходит при участии эластазы нейтрофилов. Это очень активная протеаза, которая выделяется во внеклеточное пространство нейтрофилами и разрушает эластин и другие структурные белки. Особое значение это имеет в лёгких, поскольку лёгочная ткань не регенерирует. Разрушение эластина в альвеолярных стенках ведёт к потере эластичных свойств, разрушению альвеол и развитию эмфиземы лёгких.

В норме эластазу нейтрофилов и другие протеазы ингибирует α1-антитрипсин. Основное количество α1-антитрипсина синтезируется печенью и находится в крови. В лёгких α1-антитрипсин синтезируется альвеолярными макрофагами, что и обеспечивает защиту альвеол от действия эластазы. При дефиците α1-антитрипсина, который может быть следствием различных мутаций, повышается риск развития эмфиземы лёгких.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.