Сделай Сам Свою Работу на 5

Оповещение населения об аварии на химически опасном объекте

Основным способом оповещения населения об авариях с выбросом (выливом) АХОВ является передача речевой информации через местную теле- и радиовещательную сеть. Для сообщения об авариях используется установленный сигнал «Внимание всем!», для этого используются электросирены, производственные гудки и другие сигнальные средства. Услышав этот сигнал, населе­ние обязано включить радио- и телевизионные приемники и прослу­шать речевое сообщение о ЧС и необходимых действиях.

Население, проживающее вблизи химически опасных объектов, при авариях с выбросом АХОВ, услышав информацию, передаваемую по ра­дио, телевидению, через подвижные громкоговорящие средства или други­ми способами, должно надеть средства защиты органов дыхания, закрыть окна и форточки, отключить электронагревательные и бытовые приборы, газ, погасить огонь в печах, одеть детей, взять при необходимости теплую одежду и питание (трехдневный запас непортящихся продуктов), преду­предить соседей, быстро, но без паники выйти из жилого массива в ука­занном направлении или в сторону, перпендикулярную направлению вет­ра, желательно на возвышенный, хорошо проветриваемый учас­ток местности, на расстояние не менее 1,5 км от места проживания, где находиться до получения дальнейших распоряжений.

Производственный персонал химического предприятия, на котором произошла авария, действует в соответствии с планами ликвидации аварий, а также указаниями диспетчера (дежурного) по предприятию который должен четко и ясно сообщить, что произошло, где и какие меры защиты следует предпринять в данной ситуации.

Для защиты органов дыхания следует надеть противогаз. При его отсутствии необходимо немедленно выйти из зоны поражения, исполь­зовав при этом в качестве защитных средств, ватно-марлевые повязки, подручные изделия из ткани, смоченные водой. Если путей отхода нет, рекомендуется укрыться в помещении и загерметизировать его. При этом нужно помнить, что АХОВ тяжелее воздуха будут проникать в подваль­ные помещения и нижние этажи зданий, низины и овраги, а АХОВ легче воздуха - заполнять более высокие этажи зданий.



При движении на зараженной местности необходимо строго соблюдать следующие правила:

двигаться быстрого не бежать и не поднимать пыли;

не прислоняться к зданиям и не касаться окружающих предметов,

не наступать на встречающиеся на пути капли жидкости или порошкообразные россыпи неизвестных веществ;

не снимать средства индивидуальной защиты до распоряжения;

при обнаружении капель АХОВ на коже, одежде, обуви, средствах индивидуаль­ной защиты удалять их тампоном из бумаги, ветоши или носовым платком;

по возмож­ности зараженное место промывать водой;

оказывать помощь пострадавшим детям, престарелым, не способным двигаться самостоятельно.

После выхода из зоны заражения, необходимо промыть глаза и открытые участки тела водой, принять обильное теплое питье (чай, молоко и т.п.) и обратится за помощью к медицинскому работнику для определения степени поражения и проведения профилактических и лечебных мероприятий.

Об устранении опасности химического поражения и о порядке даль­нейших действий население извещается специально уполномоченны­ми органами. При возвращении насе­ления в места постоянного проживания вход в жилые и другие помеще­ния, подвалы, а также производственные здания разрешается только после контрольной проверки на содержание АХОВ в воздухе.

Вредные и опасные производственные факторы

На ранних стадиях своего развития люди испытывали воздействия опасных и вредных факторов естественного происхождения: атмосферные осадки, пониженные и повышенные температуры воздуха, грозовые разряды и другие стихийные бедствия и т. д. В современном мире к естественным прибавились многочисленные опасные и вредные факторы антропогенного происхождения: шумы, вибрации, электромагнитные поля, ионизирующие излучения, повышенные концентрации токсичных веществ в воздухе, водоемах, почве и др.

Принципиально воздействие вредных техногенных факторов может быть устранено человеком полностью; воздействие техногенных опасных (травмоопасных) факторов - ограничено допустимым риском за счет совершенствования источников опасностей и применения защитных средств; воздействие естественных опасностей может быть ограничено мерами предупреждения и защиты.

К техногенным относятся опасности, возникающие в процессе функционирования технических объектов по причинам, непосредственно не связанным с деятельностью человека, обслуживающего эти объекты.

Вредные производственные факторы (ВПФ) - производственные факторы, которые, при определенных условиях, становятся причинами заболеваний или снижения работоспособности.

Опасные (травмоопасные) производственные факторы (ОПФ) - это производственные факторы, приводящие при определенных условиях к травматическим повреждениям, другим внезапным и резким нарушениям здоровья или летальному исходу.

Вредные и опасные производственные факторы (ВОПФ) по воздействию на человека могут быть весьма разнообразными, а именно: физическими, химическими, биологическими, психофизиологическими и т.д.

К опасным и вредным физическим производственным факторам относятся механические опасности, электрический ток, излучения, температура, электромагнитные поля, статическое электричество, освещенность, влажность, движение воздуха и т.п.

К химическим опасным и вредным производственным факторам (ХОВПФ) (химическим опасностям) относится воздействие опасных и вредных веществ, оказывающих общетоксическое, раздражающее, сенсибилизирующее, канцерогенное и мутагенное действие на организм человека.

К биологическим ОВПФ относятся микроорганизмы и макроорганизмы, воздействие которых на работающих вызывает травмы и заболевания.

К психофизиологическим ОВПФ относятся физические и нервно-психические перегрузки.

Механические опасности

Под механическими опасностями понимаются такие нежелательные воздействия на человека, происхождение которых обусловлено силами гравитации или кинетической энергией тел.

Механические опасности создаются падающими, движущимися, вращающимися объектами природного и искусственного происхождения.

К механическим колебаниям относятся: вибрация, шум, инфразвук, ультразвук. Общим свойством этих физических процессов является то, что они связаны с переносом энергии, которая может оказывать неблагоприятное воздействие на человека.

Вибрацией называют механические колебания, испытываемые каким-то телом. Причиной вибрации являются неуравновешенные силовые воздействия.

Вибрация находит полезное применение в медицине и в технике. Однако длительное воздействие вибрации на человека является опасным. Опасна вибрация при определенных условиях и для машин и механизмов, так как может вызвать их разрушение. Различают общую и локальную (местную) вибрации.

Общая вибрация вызывает сотрясение всего организма, местная воздействует на отдельные части тела. Вибрация нарушает деятельность сердечно-сосудистой и нервной систем, вызывает вибрационную болезнь. Особенно опасна вибрация на резонансных или околорезонансных частотах (6-9 Гц).

Последствия воздействия вибрации на человека зависят от мощности колебательного процесса в зоне контакта и времени воздействия. Кроме того, значительно повышаются опасные последствия вибрации, если совпадают частоты воздействующих колебаний с собственными колебаниями внутренних органов. Область резонанса, например, для человека соответствует 20...30 Гц при вертикальных вибрациях и 1,5...2 Гц - при горизонтальных. Расстройство же зрительных восприятий проявляется в частотном диапазоне между 60 и 90 Гц, что соответствует резонансу глазных яблок. Для органов грудной клетки и брюшной полости резонансными являются частоты в диапазоне от 3 до 3,5 Гц. Для всего тела в положении сидя резонанс наступает на частотах 4 - 6 Гц.

У рабочих вибрационных профессий отмечены головокружение, расстройство координации движения, симптомы укачивания, вестибулярная неустойчивость, снижение остроты зрения, потемнение в глазах.

Вибрационная болезнь регистрируется у водителей транспорта, у рабочих заводов железобетонных изделий, операторов технологических машин и агрегатов. Рабочие часто жалуются на боли в пояснице, конечностях, в области желудка, на отсутствие аппетита, бессонницу, раздражительность, быструю утомляемость.

Локальной вибрации подвергаются главным образом люди, работающие с ручным механизированным инструментом. Локальная вибрация вызывает спазмы сосудов кистей, предплечий, нарушая снабжение конечностей кровью. Одновременно колебания действуют на нервные окончания, мышечные и костные ткани, вызывают снижение кожной чувствительности, отложение солей в суставах пальцев.

Основными параметрами являются: амплитуда смещения, амплитуда колебательной скорости и колебательного ускорения, период колебаний Т, частота f.

Защита от вибрации осуществляется несколькими способами.

Борьба с вибрацией в источнике ее возникновения предполагает конструирование и проектирование таких машин и технологических процессов, в которых исключены или снижены неуравновешенные силы, отсутствует ударное взаимодействие деталей.

Отстройка от режима резонанса достигается либо изменением характеристик системы (массы и жесткости), либо изменением угловой скорости.

Вибродемпфирование – это снижение вибрации объекта путем превращения ее энергии в другие виды (в конечном счете – в тепловую).

Виброгашение – это способ снижения вибрации путем введения в систему дополнительных реактивных сопротивлений. Чаще всего для этого вибрирующие агрегаты устанавливают на массивные фундаменты.

Виброизоляция – это способ уменьшения вибрации защищенного объекта посредством введения в систему упругой связи, препятствующей передаче вибрации от источника колебаний к основанию или смежным элементам конструкций.

Всякий нежелательный звук принято называть шумом. Шум вреден для здоровья, снижает работоспособность, повышает уровень опасности. Шум нарушает качество приема информации, что влияет на возникновение ошибок и травматизм. Он вызывает усталость. При длительном воздействии шума снижается острота слуха, изменяется кровяное давление, ослабляется внимание, ухудшается зрение, происходят изменения в дыхательных центрах, возможно изменение координации движения, значительно увеличивается расход энергии при одинаковой физической нагрузке.

Интенсивный шум является причиной сердечно-сосудистых заболеваний, нарушений нормальной функции желудка и ряда других функциональных нарушений организма человека. В шумных цехах наиболее часты случаи производственного травматизма.

Воздействие шума отражается, прежде всего, на органах слуха. Различают следующие последствия воздействия шума - утомление слуха, шумовую травму и профессиональную тугоухость.

Шум – это механические колебания, распространяющиеся в твердой, жидкой или газообразной среде. Частицы среды при этом колеблются относительно положения равновесия. Мощность шума, приходящаяся на единицу площади, перпендикулярной к направлению распространения звука, называется интенсивностью звука. Звук распространяется в воздухе со скоростью 344 м/с.

Пользоваться абсолютными значениями этих характеристик шума неудобно. Кроме того, ощущения человека пропорциональны логарифму раздражителя (закон Вебера-Фехнера). Поэтому введены особые показатели, называемые уровнями, которые выражаются в децибелах (дБ).

Слуховой аппарат человека наиболее чувствителен к звукам высокой частоты. Поэтому для оценки шума необходимо знать его частоту, которая измеряется в герцах (Гц), то есть числом колебаний в секунду. Ухо человека воспринимает звуковые колебания в пределах 16-20000 Гц. Ниже 16 Гц и выше 20000 Гц находятся соответственно области неслышимых человеком инфразвуков и ультразвуков.

Для снижения шума могут быть применены следующие методы:

снижение шума в источнике;

изменение направленности излучения;

рациональная планировка предприятий и цехов, акустическая обработка помещений;

снижение шума на пути его распространения;

средства индивидуальной зашиты от шума.

Инфразвук- неслышимая человеком область колебаний. Обычно верхней границей инфразвуковой области считают частоты 16-25 Гц. Нижняя граница инфразвука не определена.

Для инфразвука характерно малое поглощение. Поэтому инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень большие расстояния. Защита от инфразвука представляет серьезную проблему.

Ультразвук – область колебаний, превышающих верхнюю границу слуховой чувствительности человека. Ультразвук находит широкое применение в металлообрабатывающей промышленности, машиностроении, металлургии и т.д. Частота применяемого ультразвука от 20 кГц до 1 МГц, мощности – до нескольких киловатт.

Ультразвук оказывает вредное воздействие на организм человека. У работающих с ультразвуковыми установками нередко наблюдаются функциональные нарушения нервной системы, изменение давления, состава и свойства крови. Часты жалобы на головные боли, быструю утомляемость, потерю слуховой чувствительности.

Ультразвук может действовать на человека как через воздушную среду, так и через жидкую или твердую (контактное действие на руки).

Защита от действия ультразвука при воздушном облучении может быть обеспечена:

использованием в оборудовании более высоких рабочих частот, для которых допустимые уровни звукового давления выше;

выполнением оборудования, излучающего ультразвук, в звукоизолирующем исполнении (типа кожухов);

устройством экранов, в том числе прозрачных, между оборудованием и работающим;

размещением ультразвуковых установок в специальных помещениях, выгородках или кабинах, если перечисленными выше мероприятиями невозможно получить необходимый эффект.

Защита от действия ультразвука при контактном облучении состоит в полном исключении непосредственного прикосновения работающих с инструментом, жидкостью и изделиями, поскольку такое воздействие наиболее вредно.

Электрический ток

Проходя через организм человека, электрический ток вызывает термическое, электролитическое, а также биологическое действия.

Термическое действие тока проявляется в ожогах некоторых отдельных участков тела, нагреве кровеносных сосудов, нервов, крови и т.п.

Электролитическоедействие тока проявляется в разложении крови и других органических жидкостей организма и вызывает значительные нарушения их физико-химического состава.

Биологическое воздействие тока проявляется как раздражение и возбуждение живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, в том числе легких и сердца. В результате могут возникнуть различные нарушения и даже полное прекращение деятельности органов кровообращения и дыхания.

Это многообразие действий электрического тока может привести к двум видам поражения: электрическим травмам и электрическим ударам.

Электрические травмы представляют собой четко выраженные местные повреждения тканей организма, вызванные воздействием электрического тока или электрической дуги.

Различают следующие электрические травмы: электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения.

Электрический ожог – самая распространенная электротравма. Ожоги бывают двух видов: токовый (или контактный) и дуговой.

Металлизация кожи – это проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги. Металлизация сопровождается ожогом кожи, вызываемым нагревшимся металлом.

Электроофтальмия – поражение глаз, вызванное интенсивным излучением электрической дуги, спектр которой содержит вредные для глаз ультрафиолетовые и ультракрасные лучи.

Механические повреждения возникают в результате резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека.

Электрический удар – это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц. Электрические удары условно делятся на следующие четыре степени: I – судорожное сокращение без потери сознания; II – потеря сознания, но сохранение дыхания и работы сердца; III – потеря сознания и нарушение сердечной деятельности или дыхания; IV – клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Причинами смерти в результате поражения электрическим током могут быть: прекращение работы сердца, прекращение дыхания и электрический шок.

Прекращение работы сердца как следствие воздействия тока на мышцу сердца наиболее опасно. Это воздействие может быть прямым, когда ток протекает через область сердца, и рефлекторным, когда ток проходит через центральную нервную систему. В обоих случаях может произойти остановка сердца или наступить его фибрилляция (беспорядочное сокращение мышечных волокон сердца - фибрилл), что приводит к прекращению кровообращения.

Электрический шок – своеобразная тяжелая нервно-рефлекторная реакция организма на сильное раздражение электрическим током, сопровождающееся глубокими расстройствами кровообращения, дыхания, обмена веществ и т.п. Шоковое состояние длится от нескольких минут до суток. После этого может наступить полное выздоровление как результат своевременного лечебного вмешательства или гибель организма из-за полного угасания жизненно важных функций.

Характер и последствия воздействия на человека электрического тока зависят от следующих факторов:

значения тока, проходящего через тело человека;

электрического сопротивления человека;

уровня приложенного к человеку напряжения;

продолжительности воздействия электрического тока;

пути тока через тело человека;

рода и частоты электрического тока;

условий внешней среды и других факторов.

Тело человека является неоднородным проводником электрического тока. Наибольшее сопротивление электрическому току оказывает кожа. Сопротивление тела человека при сухой, чистой и неповрежденной коже (измеренное при напряжении 15-20 В) колеблется от 3 до 100 кОм и более, а сопротивление внутренних слоев тела составляет всего 300-500 Ом.

В качестве расчетной величины при переменном токе промышленной частоты применяют активное сопротивление тела человека, равное 1000 Ом.

В действительных условиях сопротивление тела человека не является постоянной величиной. Оно зависит от ряда факторов, в том числе от состояния кожи, состояния окружающей среды, параметров электрической цепи и др.

С увеличением тока и времени его прохождения сопротивление тела человека падает, так как при этом усиливается местный нагрев кожи, что приводит к расширению ее сосудов, к усилению снабжения этого участка кровью и увеличению потовыделения.

С ростом напряжения, приложенного к телу человека, сопротивление кожи уменьшается в десятки раз, это объясняется электрическим пробоем рогового слоя кожи.

С увеличением частоты тока сопротивление тела будет уменьшаться, и при 10-20 кГц наружный слой кожи практически утрачивает сопротивление электрическому току.

Основным фактором, обусловливающим исход поражения электрическим током, является сила тока, проходящего через тело человека. Напряжение, приложенное к телу человека, также влияет на исход поражения, поскольку оно определяет значение тока, проходящего через человека.

Ощутимый ток – электрический ток, вызывающий при прохождении через организм ощутимые раздражения. Ощутимые раздражения вызывают переменный ток силой 0,6- 1,5 мА и постоянный – силой 5-7 мА.

Неотпускающий ток – электрический ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. Пороговый неотпускающий ток составляет 10-15мА переменного тока и 50-60 мА постоянного.

Фибрилляционный ток – электрический ток, вызывающий при прохождении через организм фибрилляцию сердца. Пороговый фибрилляционный ток составляет 100 мА переменного тока и 300 мА постоянного при длительности действия 1-2 с по пути рука – рука или рука – ноги. Фибрилляционный ток может достичь 5 А. Ток больше 5 А фибрилляцию сердца не вызывает. При таких токах происходит мгновенная остановка сердца.

Продолжительное действие тока приводит к тяжелым, а иногда и смертельным поражениям. С увеличением времени воздействия электрического тока сопротивление тела человека уменьшается, а значит сила тока увеличивается. Также происходит нагрев тканей и жидкостей в теле человека.

Ток может пройти через жизненно важные органы: сердце, легкие, головной мозг и др. Наиболее часто встречающиеся петли тока: рука – рука, рука – ноги и нога – нога. Наиболее опасны петли голова – руки и голова – ноги, но эти петли возникают относительно редко.

Постоянный ток примерно в 4-5 раз безопаснее переменного. Наибольшую опасность представляет ток с частотой от 50 до 100 Гц; при дальнейшем повышении частоты опасность поражения уменьшается и полностью исчезает при частоте 45-50 кГц. Эти токи сохраняют опасность ожогов.

Установлено, что физически здоровые и крепкие люди легче переносят электрические удары.

Сырость, токопроводящая пыль, едкие пары и газы, разрушающее действующие на изоляцию электроустановок, а также высокая температура окружающего воздуха понижают электрическое сопротивление тела человека, что еще больше увеличивает опасность поражения его током.

В зависимости от наличия перечисленных условий, «Правила устройства электроустановок» делят все помещения по опасности поражения людей электрическим током на следующие классы: без повышенной опасности, с повышенной опасностью, особо опасные, а также территории размещения наружных электроустановок.

Помещения с повышенной опасностью характеризуются наличием в них одного из следующих условий: сырости (относительная влажность воздуха длительно превышает 75%); высокой температуры (выше +35ºС); токопроводящей пыли; токопроводящих полов; возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям с одной стороны, и металлическим корпусам электрооборудования – с другой.

Особо опасные помещения характеризуются наличием одного из следующих условий: особой сырости (относительная влажность воздуха близка к 100%); химически активной или органической среды; одновременно двух и более условий повышенной опасности.

Напряжение между двумя точками цепи тока, которых одновременно касается человек, называется напряжением прикосновения. Опасность такого прикосновения, оцениваемая значением тока, проходящего через тело человека, или же напряжением прикосновения, зависит от ряда факторов: схемы замыкания цепи тока через тело человека, напряжением сети, схемы самой сети, режима ее нейтрали (т.е. заземлена или изолирована нейтраль), степени изоляции токоведущих частей от земли, а также от значения емкости токоведущих частей относительно земли и т.п.

Наиболее типичны два случая замыкания цепи тока через тело человека: когда человек касается одновременно двух проводов и когда он касается лишь одного провода. Применительно к сетям переменного тока первую схему обычно называют двухфазным прикосновением, а вторую – однофазным.

Двухфазное прикосновение более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение – линейное, и поэтому через человека пойдет больший ток.

Однофазное прикосновение происходит во много раз чаще, чем двухфазное, но оно менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза.

К основным причинам поражения электрическим током относятся следующие.

1). Случайное прикосновение к токоведущим частям, находящимся под напряжением в результате: ошибочных действий при проведении работ; неисправности защитных средств, которыми пострадавший касался токоведущих частей и др.

2). Появление напряжения на металлических конструктивных частях электрооборудования в результате: повреждения изоляции токоведущих частей; замыкания фазы сети на землю; падения провода (находящегося под напряжением) на конструктивные части электрооборудования и др.

3). Появление напряжения на отключенных токоведущих частях в результате: ошибочного включения отключенной установки; замыкания между отключенными и находящимися под напряжением токоведущими частями; разряда молнии в электроустановку и др.

4). Возникновения напряжения шага на участке земли, где находятся человек, в результате: замыкания фазы на землю; выноса потенциала протяженным токопроводящим предметом (трубопроводом, железнодорожными рельсами); неисправностей в устройстве защитного заземления и др.

Напряжением шага называется напряжение между точками земли, обусловленное растеканием тока замыкания на землю при одновременном касании их ногами человека.

Если человек будет находиться в зоне растекания тока, например, при повреждении воздушной линии электропередачи, или нарушении изоляции силового кабеля, проложенного в земле, или при стекании тока через заземлитель и стоять при этом на поверхности земли, имеющей разные потенциалы в местах, где расположены ступни ног, то на длине шага возникает напряжение Uш = φх ─ φх+8, где φх и φх+8, - потенциалы расположения точек ног; S = 0,8 м – длина шага.

Электрический ток, протекающий через тело человека в этом случае, зависит от значения тока замыкания на землю, сопротивления основания пола и обуви, а также от расположения ступней ног.

Напряжение шага может быть равным нулю, если обе ноги человека находятся на эквипотенциальной линии, т.е. линии электрического поля, обладающей одинаковым потенциалом. Напряжение шага может быть уменьшено до минимума, если свести ступни ног вместе. Наибольший электрический потенциал будет в месте соприкосновения проводника с землей. По мере удаления от этого места потенциал поверхности грунта уменьшается, и на расстоянии, примерно равном 20 м, он может быть принят равным нулю.

Напряжение шага всегда меньше напряжения прикосновения. Кроме того, протекание тока по нижней петле «нога – нога» менее опасно, чем по пути «рука – нога». Однако в практике немало случаев поражения людей при воздействии напряжения шага. Поражение при напряжении шага усугубляется тем, что из-за судорожных сокращений мышц ног человек может упасть, после чего цепь тока замыкается на теле через жизненно важные органы. Кроме того, рост человека обусловливает большую разность потенциалов, приложенных к его телу.

Для обеспечения электробезопасности применяют отдельно или в сочетании один с другим следующие технические способы и средства защиты:

недоступность токоведущих частей, находящихся под напряжением;

электрическое разделение сети;

малые напряжения;

двойная изоляция;

выравнивание потенциалов;

защитное заземление;

зануление;

защитное отключение

и другие.

К техническим способам и средствам также относятся: предупредительная сигнализация, знаки безопасности, средства индивидуальной и коллективной защиты, предохранительные приспособления и др.

Недоступность токоведущих частей электроустановок для случайного прикосновения может быть обеспечена рядом способов: изоляцией токоведущих частей, ограждением, различными блокировками, размещением токоведущих частей на недоступном расстоянии.

Изоляция является основным способом электробезопасности в сетях до 1000 В, так как применение изолированных проводов обеспечивает достаточную защиту от напряжения при прикосновении к ним. В то же время использование изолированных проводов при напряжении выше 1000 В не менее опасно, чем применение голых, так как повреждения изоляции обычно остаются незамеченными, если провод подвешен на изоляторах. А при высоких напряжениях опасно даже приближение к токоведущим частям, так как возможен пробой воздуха при малом расстоянии до человека и последующее поражение его током.

Ограждения в виде корпусов, кожухов, оболочек используются в электрических машинах, аппаратах, приборах. Сплошные ограждения являются обязательными для электроустановок, расположенных в местах, где бывает весь персонал (уборщицы и др.).

На испытательных стендах и других установках с повышенным напряжением, где часто работают люди, применяются блокировки: механические и электрические. Механические блокировки находят применение в электрических аппаратах – рубильниках, пускателях, автоматических выключателях и др., работающих в условиях, в которых предъявляются повышенные требования безопасности (судовые, подземные и тому подобные электроустановки). Электрические блокировки осуществляют разрыв цепи специальными контактами, которые устанавливаются на дверях ограждений, крышках и дверцах кожухов.

Расположение токоведущих частей на недоступной высоте или в недоступном месте позволяют обеспечить безопасность без ограждений. При этом учитывается возможность случайного прикосновения к токоведущим частям посредством длинных предметов, которые человек может держать в руках. Поэтому вне помещений неизолированные провода при напряжении до 1000 В должны быть расположены на высоте не менее 6 м, а внутри помещений – не ниже 3,5 м.

Электрическое разделение сетей – это разделение электрической сети на отдельные электрически несвязанные между собой участки с помощью разделительных трансформаторов.

Малое напряжение – это номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Для повышения безопасности в условиях с повышенной опасностью и в особо опасных условиях для ручного электроинструмента (дрель, гайковерт и др.) применяется напряжение 42 В и ниже, а для ручных ламп 12 В. Кроме того, в шахтерских лампах и некоторых бытовых приборах применяются очень малые напряжения, вплоть до 2,5 В.

Надежным средством защиты человека от поражения электрическим током является двойная изоляция, состоящая из основной и дополнительной. Основная (рабочая) электрическая изоляция токоведущих частей электроустановки обеспечивает нормальную ее работу и защите от поражения электрическим током, а дополнительная электрическая изоляция предусматривается дополнительно к основной изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции. К защитным мерам относится контроль и профилактика поврежденной изоляции.

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей электроустановки, которые могут оказаться под напряжением.

Защитное действие заземления основано на снижении напряжения прикосновения при попадании напряжения на нетоковедущие части (вследствие замыкания на корпус или других причин), что достигается уменьшением разности потенциалов между корпусом электроустановки и землей как из-за малого сопротивления заземления, так и повышения потенциала примыкающей к оборудованию поверхности земли. Чем меньше сопротивление заземления, тем выше защитный эффект.

Защитное заземление применяется в трехфазной трехпроводной сети напряжением до 1000 В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали (в четырехпроводных трехфазных сетях с заземленной нейтралью напряжением до 1000 В в качестве защитной меры в стационарных установках применяется зануление).

Зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Защитное действие зануления состоит в следующем. При пробое изоляции на корпус образуется цепь с очень малым сопротивлением: фаза – корпус – нулевой провод – фаза. Следовательно, пробой на корпус при наличии зануления превращается в однофазное короткое замыкание.

Для схемы зануления необходимо наличие в сети нулевого провода, заземления нейтрали источника и повторного заземления нулевого провода.

Назначение нулевого провода – создание для тока КЗ цепи с малым сопротивлением, чтобы этот ток был достаточным для срабатывания защиты, т.е. быстрого отключения поврежденной установки от сети.

Назначение повторного заземления нулевого провода, которое для воздушных сетей осуществляется через каждые 250 м, состоит в уменьшении потенциала зануленных корпусов при обрыве нулевого провода и замыкания фазы на корпус за местом обрыва. Поскольку повторное заземление значительно уменьшает опасность поражения током, но не устраняет ее полностью, необходима тщательная прокладка нулевого провода, чтобы исключить обрыв. Нельзя ставить в нулевом проводе предохранители, рубильники и другие приборы, нарушающие целостность нулевого провода.

Назначение заземления нейтрали – снижение до минимального значения напряжения относительно земли нулевого провода и всех присоединенных к нему корпусов при случайном замыкании фазы на землю.

Защитное отключение – это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении опасности поражения током. Такая опасность может возникнуть, в частности: при замыкании фазы на корпус электрооборудования; при снижении сопротивления изоляции фаз относительно земли ниже определенного предела; при появлении в сети более высокого напряжения; при прикосновении человека к токоведущей части, находящейся под напряжением.

Любой из этих параметров, а точнее – изменение его до определенного предела, при котором возникает опасность поражения человека током, может служить импульсом, вызывающим срабатывание защитно-отключающего устройства, т.е. автоматическое отключение опасного участка цепи.

К устройствам защитногоотключения (УЗО) предъявляются ряд требований: быстродействие – длительность отключения поврежденного участка сети должна быть не более 0,2 с; надежность; высокая чувствительность – входной сигнал по току не должен превышать нескольких миллиампер, а по напряжению – нескольких десятков вольт; избирательность отключения только аварийного участка.

Средства защиты, используемые в электроустановках, по своему назначению подразделяются на две категории: основные и дополнительные.

Основные электрозащитные средства – это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением.

Дополнительные электрозащитные средства – это средства защиты, дополняющие основные средства, а также служащие для защиты от напряжения прикосновения и напряжения шага, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

Электрозащитные средства следует использовать по их прямому назначению и только в тех электроустановках, на напряжение которых они рассчитаны. Перед применением электрозащитных средств производятся проверка их исправности, осмотр на отсутствие внешних повреждений, очистка от пыли, проверка по штампу срока годности и напряжения, на которое рассчитано защитное средство.

Первую помощь пораженному током должен уметь оказыв



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.