Сделай Сам Свою Работу на 5

Буферные системы организма.





Саратовский государственный университет

(ГОУ ВПО Саратовский ГМУ Росздрава)

 

 

О.П. Семёнова, Р.Т. Куцемако, П.В. Решетов

БУФЕРНЫЕ РАСТВОРЫ

КИСЛОТНО – ОСНОВНОЕ РАВНОВЕСИЕ.

Методическая разработка к лабораторно – практическому занятию

(для студентов лечебного и педиатрического факультетов)

 

Саратов

Федеральное агентство по здравоохранению

и социальному развитию

 

Государственное образовательное учреждение

высшего профессионального образования

 

Саратовский государственный университет

(ГОУ ВПО Саратовский ГМУ Росздрава)

О.П. Семёнова, Р.Т. Куцемако, П.В. Решетов

БУФЕРНЫЕ РАСТВОРЫ.

КИСЛОТНО – ОСНОВНОЕ РАВНОВЕСИЕ.

Методическая разработка к лабораторно – практическому занятию

(для студентов лечебного и педиатрического факультетов)

Саратов

 

УДК 546 /07/541.6

Методическая разработка является руководством к выполнению практической работы по теме: «Буферные растворы. Кислотно – основное равновесие». Она составлена для студентов по специальностям: Лечебное дело и Педиатрия в соответствии с «Программой для студентов факультетов по специальности: Лечебное дело и Педиатрия медицинских вузов».



В методической разработке вопросы теории и практики соединены в единую форму занятий. Выполнение опытов построено как самостоятельное научное исследование. Последовательность расположения заданий служит установлению логической связи между основными понятиями и раскрытию обобщающих закономерностей.

Авторы-составители:О.П. Семёнова, кандидат медицинских наук, ассистент кафедры общей и биоорганической химии СГМУ Р.Т. Куцемако, кандидат биологических наук, доцент кафедры общей и биоорганической химии СГМУ, П.В. Решетов, доктор химических наук, профессор, зав. кафедрой общей, биоорганической химии СГМУ,

Под общей редакцией профессора Решетова П.В.

Рецензенты:доктор химических наук, профессор Федотова О.В.

 

Рекомендовано к изданию ЦМКС СГМУ

 

 

© Куцемако Р.Т.

Семёнова О.П.

Решетов П.В.

 

© Саратовский

медицинский

университет, 2011 г.

 

 

Буферные растворы



Цель занятия:

Сформировать у студентов системные знания о буферных растворах, их свойствах, механизме действия, их взаимосвязи и роли в поддержании кислотно – основного гомеостаза организма, наиболее важных показателях кислотно – основного гомеостаза, механизмах его поддержания.

Научить студентов прогнозировать влияние различных факторов на величину рН и буферной ёмкости буферных систем и биологических жидкостей и механизмы действия буферных растворов в зависимости от их типа, количественно рассчитывать величину рН буферных растворов и буферной ёмкости.

Обоснование темы.

Для живых организмов характерно поддержание кислотно-основного гомеостаза на определенном уровне. Это находит выражение в достаточно постоянных значениях рН биологических сред и способности восстанавливать нормальные значения рН при воздействии протолитов. В процессе метаболизма в организме постоянно происходит синтез, распад и взаимодействие огромного количества химических соединений. Все эти процессы осуществляются при помощи ферментов, активность которых связана с определённым значением рН.

Обеспечение постоянства рН крови и других органов и тканей является одним из важнейших условий нормального существования организма. Это обеспечение достигается наличием в организме многочисленных регулирующих систем, важнейшими из которых являются буферные системы. Последние играют основную роль в поддержании КОР в организме как в условиях физиологии, так и патологии.

Кроме того, материал данной темы необходим для изучения последующих тем предмета (потенциометрия, свойства растворов ВМС и т.д.) и таких дисциплин как биохимия, микробиология, гистология, гигиена, физиология, в практической деятельности врача при оценке типа и тяжести нарушений КОР.



 

Контрольные вопросы к теме:

1. Какие растворы называются буферными растворами ?

2. Классификация буферных растворов.

3. Механизм буферного действия.

4. Уравнение Гендерсона – Гассельбаха для определения рН и рОН протолитических буферных растворов.

5. Факторы, влияющие на рН и рОН буферных растворов.

6. Буферная ёмкость.

7. Зона буферного действия.

8. Количественное определение буферной ёмкости.

9. Буферные системы крови: гидрокарбонатная, фосфатная, гемоглобиновая и протеиновая.

10. Взаимодействие буферных систем в организме.

11. Кислотно-основное равновесие.

12. Основные показатели КОР

13. Возможные причины и типы нарушений КОР организма

14. Применение реакции нейтрализации в фармакотерапии для коррекции КОР: лекарственные средства с кислотными и основными свойствами.

Одним из основных свойств живых организмов является поддержание кислотно-основного гомеостаза на определенном уровне. Протолитический гомеостаз – постоянство рН биологических жидкостей, тканей и органов. Это находит выражение в достаточно постоянных значениях рН биологических сред (крови, слюны, желудочного сока и т.д.) и способности организма восстанавливать нормальные значения рН при воздействии протолитов. Система, поддерживающая протолитический гомеостаз, включает в себя не только физиологические механизмы (легочную и почечную компенсацию), но и физико-химические: буферное действие, ионный обмен и диффузию.

Буферными растворами называются растворы, сохраняющие неизменными значения рН при разбавлении или добавлении небольшого количества сильной кислоты или основания. Протолитические буферные растворы представляют смеси электролитов, содержащие одноимённые ионы.

Различают в основном протолитические буферные растворы двух типов:

· Кислотные т.е. состоящие из слабой кислоты и избытка сопряженного с ней основания (соли, образованной сильным основанием и анионом этой кислоты). Например: СН3СООН и СН3СООNa - ацетатный буфер

СН3СООН + Н2О ↔ Н3О+ + СН3СОО- избыток сопряженного

кислота

основания

СН3СООNa → Na+ + CH3COO-

 

· Основные, т.е. состоящие из слабого основания и избытка сопряженной с ним кислоты (т.е. соли, образованной сильной кислотой и катионом этого основания). Например: NH4OH и NH4Cl – аммиачный буфер.

 

 


NH3 + H2O ↔ OH- + NH4+ избыток

Основание

сопряженной

NH4Cl → Cl- + NH4+ кислоты

 

Уравнение буферной системы рассчитывается по формуле Гендерсона-Гассельбаха:

рН = рК + ℓg , pOH = pK + ℓg ,

где рК = -ℓg КД.

С – молярная или эквивалентная концентрация электролита (C = V N)

 

Механизм действия буферных растворов

Рассмотрим его на примере ацетатного буфера: СН3СООН + СН3СООNa

Высокая концентрация ацетат-ионов обусловлена полной диссоциацией сильного электролита – ацетата натрия, а уксусная кислота в присутствии одноименного аниона существует в растворе практически в неионизированном виде.

1. При добавлении небольшого количества хлороводородной кислоты, ионы Н+ связываются с имеющимся в растворе сопряженным основанием СН3СОО- в слабый электролит СН3СООН.

CH3COO ‾ +H + ↔ CH3COOH (1)

 

Из уравнения (1) видно, что сильная кислота НС1 заменяется эквивалентным количеством слабой кислоты СН3СООН. Количество СН3СООН увеличивается и по закону разбавления В. Оствальда степень диссоциации уменьшается. В результате этого концентрация ионов Н+ в буфере увеличивается, но очень незначительно. рН сохраняется постоянным.

При добавлении кислоты к буферу рН определяется по формуле:

рН = рК + ℓg

 

2. При добавлении к буферу небольшого количества щелочи протекает реакция её с СН3СООН. Молекулы уксусной кислоты будут реагировать с гидроксид-ионами с образованием Н2О и СН3СОО:

CH3COOН + OH ↔ CH3COO ‾ + H2O (2)

 

В результате этого щелочь заменяется эквивалентным количеством слабоосновной соли CH3COONa. Количество СН3СООН убывает и по закону разбавления В.Оствальда степень диссоциации увеличивается за счет потенциальной кислотности оставшихся недиссоциированных молекул СН3СООН. Следовательно, концентрация ионов Н+ практически не изменяется. рН остаётся постоянным.

При добавлении щелочи рН определяется по формуле:

рН = рК + ℓg

3. При разбавлении буфера рН также не меняется, т.к. константа диссоциации и соотношение компонентов при этом остаются неизменными.

Таким образом, рН буфера зависит от: константы диссоциации и соотношения концентрации компонентов. Чем эти величины больше, тем больше рН буфера. рН буфера будет наибольшим при соотношении компонентов равным единице.

 

Значения рН различных биологических жидкостей и тканей организма.

 

Биологическая жидкость рН (в норме)
Сыворотка крови 7,40 – 0,05
Спинномозговая жидкость 7,40 – 0,05
Слюна 6,35 – 6,85
Чистый желудочный сок 0,9 – 1,1
Сок поджелудочной железы 7,5 – 8,0
Желчь в протоках 7,4 – 8,5
Моча 4,8 – 7,5
Печень (внутриклеточная жидкость) 6,4 – 7,4
Слёзная жидкость 7,4 ± 0,1
Молоко 6,6 – 6,9

 

Для количественной характеристики буфера вводится понятие буферной ёмкости.

Буферная ёмкость

Это способность буферной системы противодействовать изменению рН среды.

Интервал значений рН, выше и ниже которого буферное действие прекращается, называется зоной буферного действия.

Она равна рН = рК ± 1

Буферная ёмкость (В) выражается количеством моль-эквивалентов сильной кислоты или щелочи, которое следует добавить к одному литру буфера, чтобы сместить рН на единицу.

В =

В – буферная ёмкость,

nЭ – количество моль-эквивалента сильной кислоты или щелочи,

рНН – начальное значение рН ( до добавления кислоты или щелочи)

рНК – конечное значение рН (после добавления кислоты или щелочи)

ΔрН – изменение рН.

На практике буферная ёмкость рассчитывается по формуле:

В =

V – объём кислоты или щелочи,

N – эквивалентная концентрация кислоты или щелочи,

Vбуф.- объём буферного раствора,

Δ рН – изменение рН.

О противодействии изменению рН крови свидетельствуют следующие данные. Чтобы сдвинуть рН крови на единицу в щелочную область, нужно прибавить в кровь в 70 раз больше количества NaOH, чем в такой же объём чистой воды. Для изменения рН на единицу в кислую область, следует в кровь добавить в 320 раз больше количества соляной кислоты, чем к такому же объёму чистой воды.

Буферная ёмкость зависит от концентрации электролитов и соотношения компонентов буфера. Наибольшей буферной ёмкостью обладают растворы с большей концентрацией компонентов и соотношением компонентов, равным единице.

Буферная ёмкость артериальной крови 25,3 ммоль/л, венозной – 24,3 ммоль/л, слюна обладает буферной ёмкостью и определяется бикарбонатной, фосфатной и белковой системами. Буферная ёмкость слюны изменяется под влиянием ряда факторов: углеводистая диета снижает буферную ёмкость слюны, высокобелковая диета – повышает её. Поражаемость зубов кариесом меньше у лиц с высокой буферной ёмкостью.

В организме человека действуют белковый, гемоглобиновый, фосфатный и бикарбонатный буферы.

Буферные системы организма.

Бикарбонатный буфер.

Он составляет 53 % буферной ёмкости и представлен:

Н2СО3

NaHCO3 Соотношение 1 : 20

Бикарбонатный буфер представляет собой основную буферную систему плазмы крови; он является системой быстрого реагирования, так как продукт его взаимодействия с кислотами СО2 – быстро выводится через легкие. Помимо плазмы, эта буферная система содержится в эритроцитах, интерстициальной жидкости, почечной ткани.

 

Механизм действия.

1. В случае накопления кислот в крови уменьшается количество НСО3- и происходит реакция: НСО3- + Н+ ↔ Н2СО3 ↔ Н2О + СО2↑. Избыток удаляется лёгкими. Однако значение рН крови остаётся постоянным, так как увеличивается объём лёгочной вентиляции, что приводит к уменьшению объёма СО2

2.При увеличении щелочности крови концентрация НСО3- увеличивается: Н2СО3 + ОН- ↔ НСО3- + Н2О.

Это приводит к замедлению вентиляции лёгких, поэтому СО2 накапливается в организме и буферное соотношение остаётся неизменным.

 

Гемоглобиновый буфер

Составляет 35 % буферной ёмкости.

Главная буферная система эритроцитов, на долю которой приходится около 75% всей буферной ёмкости крови. Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и СО2. Гемоглобиновая буферная система крови играет значительную роль сразу в нескольких физиологических процессах: дыхании, транспорте кислорода в ткани и в поддержании постоянства рН внутри эритроцитов, а в конечном итоге – в крови.

Она представлена двумя слабыми кислотами – гемоглобином и оксигемоглобином и сопряженными им основаниями – соответственно гемоглобинат- и оксигемоглобинат-ионами:

HHb ↔ H+ + Hb-

HHbO2 ↔ H+ HbO2-

Оксигемоглобин – более сильная кислота (рКа = 6,95), чем гемоглобин (рКа = 8,2). При рН = 7,25 (внутри эритроцитов) оксигемоглобин ионизирован на 65%, а гемоглобин – на 10%, поэтому присоединение кислорода к гемоглобину уменьшает значение рН крови, так как при этом образуется более сильная кислота. С другой стороны, по мере отдачи кислорода оксигемоглобином в тканях значение рН крови вновь увеличивается.

Буферные свойства ННb прежде всего обусловлены возможностью взаимодействия кислореагирующих соединений с калиевой солью гемоглобина с образованием эквивалентного количества соответствующей калийной соли кислоты и свободного гемоглобина:

КНb + Н2СО3 ↔ КНСО3 + ННb.

Образующийся гидрокарбонат (КНСО3) уравновешивает количество поступающей Н2СО3, рН сохраняется, так как происходит диссоциация потенциальных молекул Н2СО3 и образовавшихся гемоглобиновых кислот.

Именно таким образом поддерживается рН крови в пределах нормы, несмотря на поступление в венозную кровь огромного количества СО2 и других кислореагирующих продуктов обмена.

В капиллярах лёгких гемоглобин (ННb) поглощает кислород и превращается в HHbO2, что приводит к некоторому подкислению крови, вытеснению некоторого количества Н2СО3 из бикарбонатов и понижению щелочного резерва крови, а в тканях отдает его и поглощает СО2.

В лёгких: ННb + O2 ↔ HHbO2;

HHbO2 + HCO3- ↔ HbO2 + H2O + CO2

В тканях: HbO2 ↔ Hb- + O2; Hb- + Н2СО3 ↔ ННb + HCO3-

Кроме того, гемоглобиновый буфер является сложным белком и действует как белковый буфер.

 

Фосфатный буфер

Составляет 5 % буферной ёмкости. Содержится как в крови, так и в клеточной жидкости других тканей, особенно почек. В клетках он представлен солями К2НРО4 и КН2РО4, а в плазме крови и в межклеточной жидкости Na2HPO4 и NaH2PO4.

Функционирует в основном в плазме и включает:

дигидрофосфат ион Н2РО4- и гидрофосфат ион НРО42-.

Отношение [HPO4 2- ]/[H2PO4-] в плазме крови (при рН = 7,4) равно 4 : 1 . Следовательно, эта система имеет буферную ёмкость по кислоте больше, чем по основанию.

Например, при увеличении концентрации катионов Н+ во внутриклеточной жидкости, например, в результате переработки мясной пищи, происходит их нейтрализация ионами НРО4 2- :

Н + + НРО4 2- ↔ Н2РО4 1-

Образующийся избыточный дигидрофосфат выводится почками, что приводит к снижению величины рН мочи.

При увеличении концентрации оснований в организме, например при употреблении растительной пищи, они нейтрализуются ионами Н2РО4 1-:

ОН + Н2РО4 1- ↔ НРО4 2- + Н2О

Образующийся избыточный гидрофосфат выводится почками, при этом рН мочи повышается.

Выведение тех или иных компонентов фосфатной буферной системы с мочой, в зависимости от перерабатываемой пищи, объясняет широкий интервал значений рН мочи – от 4,8 до 7,5. Фосфатная буферная система крови характеризуется меньшей буферной ёмкостью, чем гидрокарбонатная, из-за малой концентрации компонентов крови. Однако эта система играет решающую роль не только в моче, но и в других биологических средах – в клетке, в соках пищеварительных желез, в моче.

Белковый буфер

Составляет 5 % буферной ёмкости. Он состоит из белка-кислоты и его соли, образованной сильным основанием.

Pt – COOH - белок-кислота

Pt – COONa – белок-соль

1. При образовании в организме сильных кислот они взаимодействуют с солью белка. При этом получается эквивалентное количество белок-кислоты: НС1 + Pt-COONa ↔ Pt-COOH + NaCl. По закону разбавления В.Оствальда увеличение концентрации слабого электролита уменьшает его диссоциацию, рН практически не меняется.

2. При увеличении щелочных продуктов они взаимодействуют с

Pt-СООН: NaOH + Pt-COOH ↔ Pt-COONa + H2O

Количество кислоты уменьшается. Однако концентрация ионов Н+ увеличивается за счет потенциальной кислотности белок-кислоты. поэтому практически рН не меняется.

Белок – это амфотерный электролит и поэтому проявляет собственное буферное действие.

Рассмотрим взаимодействие буферных систем в организме по стадиям:

1. В процессе газообмена в легких кислород поступает в эритроциты, где протекает реакция:

ННb + O2 ↔ HHbO2 ↔ Н+ + HbO2-

2. По мере перемещения крови в периферические отделы кровеносной системы происходит отдача кислорода ионизированной формой HbO2-

HbO2-↔ Нb- + О2

Кровь при этом из артериальной становится венозной. Отдаваемый в тканях кислород расходуется на окисление различных субстратов, в результате чего образуется СО2, большая часть которого поступает в эритроциты.

3. В эритроцитах в присутствии карбоангидразы со значительной скоростью протекает следующая реакция:

СО2 + Н2О ↔ Н2СО3 ↔ Н+ + НСО3-

4. Образующийся избыток протонов связывается с гемоглобинат-ионами:

Н+ + Нb- → HHb

Связывание протонов смещает равновесие реакции стадии (3) вправо, вследствие чего концентрация гидрокарбонат ионов возрастает и они диффундируют через мембрану в плазму. В результате встречной диффузии ионов, отличающихся кислотно-основными свойствами (хлорид-ион протолитически неактивен; гидрокарбонат ион в условиях организма является основанием), возникает гидрокарбонатно-хлоридный сдвиг. Этим объясняется более кислая реакция среды в эритроцитах (рН = 7,25) по сравнению с плазмой (рН = 7,4).

5. Поступающие в плазму гидрокарбонат-ионы нейтрализуют накапливающийся там избыток протонов, возникающий в результате метаболических процессов:

НСО3- + Н+ ↔ Н2СО3 ↔ Н2О + СО2

6. Образовавшийся СО2 взаимодействует с компонентами белковой буферной системы:

СО2 + Рt-NH2 ↔ Pt-NHCOOH ↔ H+ + Pt-NHCOO-

7. Избыток протонов нейтрализуется фосфатным буфером:

Н+ + НРО4- ↔ Н2РО4-

8. После того как кровь вновь попадает в легкие, в ней увеличивается концентрация оксигемоглобина (стадия 1), который реагирует с гидрокарбонат-ионами, не диффундировавшими в плазму:

НСО3- + ННbО2 ↔ НbО2- + СО2 + Н2О

Образующийся СО2 выводится через легкие. В результате уменьшения концентрации НСО3- ионов в этой части кровеносного русла наблюдаются их диффузия в эритроциты и диффузия хлорид-ионов в обратном направлении.

9. В почках также накапливается избыток протонов в результате реакции:

СО2 + Н2О ↔ Н2СО3 ↔ Н+ + НСО3-,

который нейтрализуется гидрофофат-ионами и аммиаком (аммиачный буфер): H+ + NH3 ↔ NH4+

Таким образом, гемоглобиновая система участвует в двух процессах:

· Связывание протонов, накапливающихся в результате метаболических процессов;

· Протонирование гидрокарбонат-ионов с последующим выделением СО2

Гемоглобиновую буферную систему можно рассматривать как одно из важнейших звеньев в транспорте СО2 из тканей в легкие.

Следует отметить, что на поддержание постоянства рН различных жидких систем организма оказывают влияние не столько буферные системы, сколько функционирование ряда органов и систем: легких, почек, кишечника, кожи и др.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.