Сделай Сам Свою Работу на 5

Метод проектирования на оси координат.





Запишем уравнение (1) в проекциях на оси координат:

Σx=0: mv=m2∙v2x,

Σy=0: 0=-m1v1+m2∙v2y.

откуда выразим проекции скорости второго осколка:

По теореме Пифагора находим скорость

тангенс угла наклона вектора скорости к оси х

 

Пример 11. Человек массой m1 находится на неподвижной платформе массой m2. С какой угловой скоростью ω начнет вращаться платформа, если человек будет двигаться по окружности радиусом r вокруг оси вращения? Скорость движения человека относительно платформы равна v0. Радиус платформы R. Считать платформу однородным диском, а человека - материальной точкой.

Рис.6.6

 

Решение. В начальном состоянии (состояние I) система тел “человек + платформа” неподвижна. При движении человека со скоростью v0 относительно платформы против часовой стрелки платформа начинает вращаться по часовой стрелке (состояние II) с угловой скоростью ω.

На систему действуют внешние силы тяжести и реакции со стороны оси, направленные вертикально (трением в оси пренебрегаем), их момент равен нулю. Поэтому можно применит закон сохранения момента импульса.

В состоянии I момент импульса системы равен нулю:



LI=0.

В состоянии II момент импульса человека (материальной точки) равен по модулю L1=m1v1r, где v1 - скорость человека относительно Земли, и направлен вертикально вверх. Момент импульса платформы (сплошного диска) равен по модулю L2=J2∙ω и направлен вертикально вниз. Суммарный момент импульса в проекции на ось, направленную вертикально вверх, равен:

LII=L1-L2=m1v1r-J2∙ω.

Здесь J2 - момент инерции сплошного диска,

По закону сохранения момента импульса LI=LII имеем:

m1v1r-J2∙ω=0. (1)

Выразим скорость v1 человека относительно Земли через скорость v0 человека относительно платформы. Поскольку линейная скорость точек платформы, находящихся на расстоянии r от оси вращения равна v=ωr, то v1=v0-ωr.

Перепишем (1) в виде

откуда получим выражение для угловой скорости:

 

Пример 12. Два резиновых диска с шероховатой поверхностью вращаются вокруг осей, лежащих на одной вертикали, причем поверхности дисков параллельны. Первый диск обладает моментом инерции J1 и угловой скоростью ω1, второй - J2 и ω2. Определить угловую скорость дисков при падении верхнего диска и соединении его с нижним, а также изменение их суммарной кинетической энергии.



Решение. Два диска образуют систему взаимодействующих тел. На них действуют внешние силы тяжести и реакции со стороны оси, а также внутренняя сила трения. Поскольку моменты внешних сил относительно оси вращения равны нулю, можно применить закон сохранения момента импульса.

В начальном состоянии момент импульса системы равен

LI=J1ω1±J2ω2.

Знак “плюс” применяется в случае, когда диски вращаются в одном направлении, знак “минус” - в противоположных направлениях.

При соединении вследствие силы трения угловая скорость дисков становится одинаковой, а момент импульса системы принимает значение:

LII=(J1+J2)ω.

По закону сохранения импульса LI=LII получаем выражение

J1ω1±J2ω2=(J1+J2)ω,

откуда угловая скорость после соединения оказывается равной

Кинетическая энергия дисков в начальном состоянии составляет

в конечном состоянии –

Изменение суммарной кинетической энергии системы, равное количеству выделившегося тепла, составит

W=WI-WII.

Подставляя в последнее выражение формулы (2) и (3) и учитывая (1), окончательно получим:

Знак “минус” применяется в случае, когда диски вращаются в одном направлении, знак “плюс” - в противоположных направлениях.

 

Пример 13. Момент импульса тела относительно неподвижной оси изменяется по законам: а) б) . Как изменяется момент сил, действующих на тело, в каждом случае?

Решение. Основное уравнение динамики вращательного движения кроме формы M=Jε может иметь вид Поэтому для ответа на заданный вопрос можно продифференцировать выражения момента импульса, заданные в условии задачи. В случае “а” поэтому с течением времени вращающий момент уменьшается. В случае “б” , с течением времени вращающий момент возрастает.



 

Вопросы для самопроверки

- Что называется количеством движения механической системы?

- Как формулируется теорема об изменении количества движения системы?

- Запишите математическое выражение теоремы об изменении количества движения механической системы в дифференциальной и интегральной форме.

- В каком случае количество движения механической системы не изменяется?

- Как определяется импульс переменной силы за конечный промежуток времени? Что характеризует импульс силы?

- Чему равны проекции импульса постоянной и переменной силы на оси координат?

- Чему равен импульс равнодействующей?

- Как изменяется количество движения точки, движущейся равномерно по окружности?

- Что называется количеством движения механической системы?

- Чему равно количество движения маховика, вращающегося вокруг неподвижной оси, проходящей через его центр тяжести?

- Сформулируйте теоремы об изменении количества движения материальной точки и механической системы в дифференциальной и конечной формах. Выразите каждую из этих четырех теорем векторным уравнением и тремя уравнениями в проекциях на оси координат.

- При каких условиях количество движения механической системы не изменяется? При каких условиях не изменяется его проекция на некоторую ось?

- Почему происходит откат орудия при выстреле?

- Могут ли внутренние силы изменить количество движения системы или количество движения ее части?

- Что называют телом переменной массы?

- Кем созданы основы механики тел переменной массы?

- Какой вид имеет основное уравнение динамики точки переменной массы? В каком случае оно имеет вид основного уравнения динамики точки постоянной массы?

- От каких факторов зависит скорость свободного движения ракеты?

- Зависит ли конечная скорость ракеты от времени сгорания топлива?

- Что называется кинетическим моментом механической системы? Какова его размерность?

- Чему равен кинетический момент вращающегося твердого тела относительно оси вращения?

- Как выражается производная по времени от кинетического момента системы относительно точки?

- В каких случаях кинетический момент системы относительно точки и относительно оси остается постоянным?

- Что называют кинетическим моментом механической системы относительно центра или оси?

- Сформулируйте теорему об изменении кинетического момента механической системы относительно центра и относительно оси?

- При каких условиях остается постоянным кинетический момент механической системы относительно центра и при каких – кинетический момент относительно оси?

- Какова кинетическая интерпретация теоремы об изменении кинетического момента механической системы относительно центра?

- Почему трудно прыгнуть на берег с легкой лодки, а такой же прыжок с парохода легко осуществить?

- Покоящийся шар получает центральный удар от другого такого же шара. Когда первый шар приобретает большую скорость - при упругом или неупругом ударе?

 

Задачи для самостоятельного решения

Задача 1. Человек массой 60 кг, бегущий со скоростью 8 км/ч, догоняет тележку массой 80 кг, движущуюся со скоростью 2,9 км/ч, и вскакивает на нее. 1) С какой скоростью станет двигаться тележка? 2) С какой скоростью будет двигаться тележка, если человек бежал ей навстречу?

Задача 2. Конькобежец массой 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой 3 кг со скоростью 8 м/с. Найти, на какое расстояние откатится при этом конькобежец, если известно, что коэффициент трения коньков о лед равен 0,02.

Задача 3. Человек, стоящий на неподвижной тележке, бросает вперед в горизонтальном направлении камень массой 2 кг. Тележка с человеком покатилась назад, и в первый момент после бросания ее скорость была равна 0,1 м/с. Масса тележки с человеком равна 100 кг. Найти кинетическую энергию брошенного камня через 0,5 с после начала его движения. Сопротивлением воздуха при полете камня пренебречь..

Задача 4. Люстра массой 100 кг подвешена к потолку на металлической цепи, длина которой 5 м. Какова высота, на которую можно отклонить люстру, чтобы при последующих качаниях цепь не оборвалась, если известно, что разрыв наступает при силе натяжения 2 кН?

Задача 5. Радиус вала махового колеса r=10-2 м. На вал намотан шнур, к концу которого привязан груз массой m=0,2 кг. Под действием силы тяжести груз опускается за t=5 с с высоты h1=1,2 м, а затем, вследствие вращения колеса, по инерции поднимается на высоту h2=0,8 м. Определить момент инерции колеса.

Задача 6. Горизонтальная платформа массой 80 кг и радиусом 1 м вращается с угловой скоростью, соответствующей 20 об/мин. В центре платформы стоит человек и держит в расставленных руках гири. Какое число оборотов в минуту будет делать платформа, если человек, опустив руки, уменьшить свой момент инерции от 2,94 кг∙м2 до 0,98 кг∙м2? Считать платформу круглым однородным диском.

Задача 7. Горизонтальная платформа массой m = 100 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n1 = 10 об/мин. Человек массой m0 = 60 кг стоит при этом на краю платформы. С какой частотой n2 начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу однородным диском, а человека - материальной точкой.

Задача 8. Математический маятник массы m1 и стержень массы m2 подвешены в одной и той же точке А, вокруг которой они могут свободно колебаться. Длина нити маятника равна длине нити стержня. Шарик маятника отклоняют в сторону так, что он приподнимается на высоту h относительно своего нижнего положения. Затем шарик отпускают, и он неупруго сталкивается со стержнем. Как будут двигаться шарик и нижний конец стержня после удара и на какие высоты они поднимутся?

Задача 9. Блоки радиусами r1 и r2 (рис.7) жестко скреплены между собой и насажены на общую ось. Грузы 1 и 2 массами m1 и m2, разматывая нити, намотанные на блоки, приводят их во вращение. Пренебрегая массой нитей и считая блоки однородными дисками массами М1 и М2 соответственно, определить, через сколько времени скорость груза 1 станет равной v1, если движение начинается из состояния покоя и при вращении на блоки действует постоянный момент сил сопротивления М.

Рис.7

 

Задача 10.Блоки (рис.8) радиусами r1 и r2 жестко скреплены между собой и насажены на общую ось. Груз 2 массы m2, разматывая намотанную на блок нить, приводит блоки во вращение и поднимает груз 1 массы m1. Считая, что на блоки действует момент сил сопротивления , где – постоянная, определить угловую скорость вращения блоков, если движение начинается из состояния покоя. Блоки считать однородными дисками массами М1 и М2 соответственно, массой нитей пренебречь.

Рис.8

 

Задача 11. Груз 1 массы m1 (рис.9) поднимается посредством каната, навитого на барабан 2, к которому приложен постоянный вращающий момент М. Барабан 2 представляет собой однородный цилиндр радиуса r и массы m2. Определить угловую скорость вращения барабана как функцию времени, если движение начинается из состояния покоя, а при вращении возникает момент M1 сил сопротивления, пропорциональный угловой скорости , , где – постоянная.

Рис.9

 

Задача 12.Груз 1 массы m (рис.10) поднимается при помощи ворота, на который действует момент сопротивления, пропорциональный угловой скорости его вращения, , где – постоянная. Масса барабана ворота равна m1, радиус барабана r, длина рукоятки ОА = l. Считая силу F, приложенную перпендикулярно к рукоятке ОА, постоянной по величине, определить закон движения груза 1, если в начальный момент он покоился. Барабан считать однородным цилиндром, массой рукоятки пренебречь.

Рис.10

 

Задача 13. Груз 1 массы m1 (рис.11) из состояния покоя поднимают вверх по шероховатой наклонной плоскости посредством веревки, намотанной на барабан 2, к которому приложен вращающий момент М = at, где a – постоянная. Определить закон движения груза 1, если коэффициент трения тела 1 о плоскость равен f, а угол наклона плоскости к горизонту , причем при t = 0 груз покоился. Кроме того, определить момент времени, когда груз 1 начнет движение. Барабан считать однородным цилиндром радиуса r и массы m.

Рис.11

Задача 14. Два блока массами m1 и m2 (рис.12) и соответственно радиусами r1 и r2 жестко соединены между собой и насажены на общую ось вращения О. К концу одной веревки, намотанной на блок, прикреплен груз А массы m, поднимаемый по шероховатой наклонной плоскости с углом наклона к горизонту. К концу другой веревки приложена постоянная сила F. Считая блоки однородными дисками и полагая, что коэффициент трения скольжения равен f, а весом веревок и трением в блоках можно пренебречь, определить зависимость угловой скорости вращения от времени, если движение началось из состояния покоя.

Рис.12

 

Задача 15.Блоки радиусами r1 и r2 (рис.13) жестко скреплены между собой и насажены на общую ось. Грузы 1 и 2 массами m1 и m2, разматывая нити, намотанные на блоки, приводят их во вращение. Пренебрегая массой нитей и считая блоки однородными дисками массами М1 и М2 соответственно, определить угловое ускорение блоков, если при вращении на блоки действует момент сил сопротивления М = at, где a – постоянная, а также момент времени, когда система под действием сил сопротивления остановится, если движение начинается из состояния покоя.

Рис.13

 

Задача 16.Груз 1 массы m1, (рис.14) опускаясь вертикально вниз, раскручивает ступенчатый блок 2 посредством невесомой и нерастяжимой нити, которая намотана на колесо блока радиуса r1. На большее колесо блока, имеющее радиус r2, намотана другая нить, второй конец которой привязан к грузу 3 массы m, скользящему по наклонной плоскости с коэффициентом трения скольжения, равным f,и углом наклона . Блок состоит из однородных дисков массами и соответственно, жестко соединенных друг с другом и имеющих общую ось вращения. Определить угловую скорость блока и егоугловое ускорение, если движение начинается из состояния покоя.

Рис.14

 

Задача 17.Груз 1 массы m1 (рис.15) из состояния покоя скользит вниз по шероховатой наклонной плоскости и посредством невесомой нити раскручивает барабан 2, на который действует момент сил сопротивления M, пропорциональный угловой скорости барабана, , где a – постоянная. Определить угловую скорость барабана как функцию времени и ускорение груза 1, если коэффициент трения тела 1 о плоскость равен f, а угол наклона плоскости к горизонту . Барабан считать однородным цилиндром радиуса r и массы m.

Рис.15

 

Задача 18.Блоки радиусами r1 и r2 (рис.16) жестко скреплены между собой и насажены на общую ось. Груз 2 массы m2, разматывая намотанную на блок нить, приводит блоки во вращение и поднимает груз 1 массы m1. Считая, что на блоки действует момент сил сопротивления М = at, где a – постоянная, определить угловое ускорение блоков, а также момент времени, когда система под действием сил сопротивления остановится, если движение начинается из состояния покоя. Блоки считать однородными дисками массами М1 и М2 соответственно, массой нитей пренебречь.

Рис.16

 

Задача 19.Груз 1 массы m1 (рис.17), падая по вертикали, раскручивает ступенчатый блок 2 посредством невесомой и нерастяжимой нити, которая намотана на колесо блока радиуса r1. На меньшее колесо A блока, имеющее радиус r2, намотана другая нить, второй конец которой привязан к грузу 3 массы m, скользящему по горизонтальной плоскости с коэффициентом трения скольжения, равным f. Блок состоит из однородных дисков массами и соответственно, жестко соединенных друг с другом и имеющих общую ось вращения. При вращении блока на него действует постоянный момент сил сопротивления М. Определить угловую скорость вращения блока как функцию времени и ускорение груза 3, если движение начинается из состояния покоя.

Рис.17

 

Задача 20.Груз 1 массы m1 (рис.18) из состояния покоя поднимают вверх по шероховатой наклонной плоскости посредством веревки, намотанной на барабан 2, к которому приложен вращающий момент М = at2, где a – постоянная. Определить зависимость угловой скорости барабана от времени, если коэффициент трения тела 1 о плоскость равен f, а угол наклона плоскости к горизонту , причем при t = 0 груз покоился. Кроме того, определить момент времени, когда груз 1 начнет движение. Барабан считать однородным цилиндром радиуса r и массы m.

Рис.18

 

Задача 21.Блоки радиусами r1 и r2 (рис.19) жестко скреплены между собой и насажены на общую ось. Груз 2 массы m2, разматывая намотанную на блок нить, приводит блоки во вращение и поднимает груз 1 массы m1. Считая, что на блоки действует постоянный момент сил сопротивления М, определить скорость груза 1 как функцию времени t, если движение начинается из состояния покоя. Блоки считать однородными дис­ками массами М1 и М2 соответственно. Массой нитей пренебречь.

Рис.19

 

Задача 22.К грузам А и В массами m1 и m2 (рис.20) соответственно прикреплены нерастяжимые нити, вторые концы которых намотаны на однородные диски 1 и 2 массами , и радиусами r1 и r2 (r2 > r1). Диски жестко соединены между собой и насажены на общую ось. Груз А, спускаясь по наклонной плоскости с углом наклона к горизонту, раскручивает диски и поднимает груз В вверх по наклонной плоскости с углом . Определить угловую скорость вращения блока как функцию времени и ускорение груза А. Силами трения и массой нитей пренебречь, движение начинается из состояния покоя.

Рис.20

 

Задача 23.Груз 1 массы m1, (рис.21) скользящий под действием постоянной горизонтальной силы F по горизонтальной плоскости с коэффициентом трения скольжения f, раскручивает ступенчатый блок 2 посредством невесомой и нерастяжимой нити, которая намотана на колесо блока радиуса r1. На большее колесо блока, имеющее радиус r2, намотана другая нить, второй конец которой привязан к грузу 3 массы m. Блок состоит из однородных дисков массами и соответственно, жестко соединенных друг с другом и имеющих общую ось вращения. Определить угловую скорость вращения блока как функцию времени и ускорение груза 3, если движение начинается из состояния покоя.

Рис.21

 

Задача 24.Груз 1 массы m1 (рис.22) поднимается посредством каната, навитого на барабан 2, к которому приложен вращающий момент М = at, где a – постоянная. В начальные моменты времени, из-за малости величины вращающего момента, груз будет опускаться и лишь с некоторого момента времени начнет подниматься. Полагая, что движение начинается из состояния покоя, определить угловую скорость вращения барабана как функцию времени, а также момент времени, когда система остановится и барабан начнет вращаться в другую сторону. Барабан 2 считать однородным цилиндром радиуса r и массы m2.

Рис.22

 

Задача 25.Груз 1 массы m (рис.23) поднимается при помощи ворота (жестко соединенных барабана и стержня), на который действует момент сил сопротивления M1 = at, где a – постоянная. Масса барабана ворота равна m1, радиус барабана r, длина рукоятки ОА = l. Считая, что сила F приложена перпендикулярно к рукоятке ОА и постоянна по величине, определить закон движения груза 1 и момент времени, когда он остановится, если в начальный момент груз покоился. Барабан считать однородным цилиндром, массой рукоятки пренебречь.

Рис.23

 

Задача 26.Два блока массами m1 и m2 (рис.24) и радиусами r1 и r2 соответственно жестко соединены между собой и насажены на общую ось вращения О. К концу одной веревки, намотанной на блок, прикреплен груз А массы m, поднимаемый по наклонной плоскости с углом наклона к горизонту и с коэффициентом трения f. К концу другой веревки приложена сила F = at, где a – постоянная. Считая, что блоки являются однородными дисками, а весом веревок и трением в блоках можно пренебречь, определить зависимость угловой скорости вращения от времени, если движение началось из состояния покоя. Кроме того, определить момент времени, когда груз А начнет движение.

Рис.24

 

Задача 27.Груз 1 массы m1 (рис.25), опускаясь вертикально вниз, раскручивает ступенчатый блок 2 посредством невесомой и нерастяжимой нити, которая намотана на колесо блока радиуса r1. На большее колесо блока, имеющее радиус r2, намотана другая нить, второй конец которой привязан к грузу 3 массы m, скользящему по гладкой наклонной плоскости с углом наклона . Блок состоит из однородных дисков массами и соответственно, жестко соединенных друг с другом и имеющих общую ось вращения, причем при вращении на блок действует момент сил сопротивления М = at, где a – постоянная. Определить угловую скорость блока и момент его вторичной остановки, если движение начинается из состояния покоя.

Рис.25

 

Задача 28.Однородный горизонтальный диск (рис.26) радиуса r и массы m может вращаться вокруг проходящей через его центр О вертикальной оси. Вдоль радиуса ОА по направляющей может двигаться точечное тело А массы m0. В начальный момент времени к диску приложили вращающий момент M = αt, где α – постоянная, а тело А начало двигаться от точки О с постоянной относительной скоростью vr = v0. Определить зависимость угловой скорости вращения и ее величину, когда тело А достигнет края диска.

Рис.26

 

Задача 29.Груз 1 массы m1 (рис.27) поднимается посредством каната, навитого на барабан 2, к которому приложен вращающий момент М = at2, где a – постоянная. В начальные моменты времени, из-за малости величины вращающего момента, груз будет опускаться и лишь с некоторого момента времени начнет подниматься. Полагая, что движение начинается из состояния покоя, определить угловую скорость вращения барабана как функцию времени, а также момент времени, когда система остановится и барабан начнет вращаться в другую сторону. Барабан 2 считать однородным цилиндром радиуса r и массы m2.

Рис.27

 

Задача 30.К грузам А и В (рис.28) массами m1 и m2 соответственно прикреплены нерастяжимые нити, вторые концы которых намотаны на однородные диски 1 и 2 массами и радиусами r1 и r2 (r2 > r1). Диски жестко соединены между собой и насажены на общую ось. Груз B, спускаясь по наклонной плоскости с углом наклона к горизонту, раскручивает диски и поднимает груз A вверх по наклонной плоскости с углом , при этом на блок действует постоянный момент сил сопротивления М. Определить угловую скорость вращения блока как функцию времени и ускорение груза В. Силами трения и массой нитей пренебречь, движение начинается из состояния покоя.

Рис.28

 

Задача 31. Блоки радиусами r1 и r2 (рис.29) жестко скреплены между собой и насажены на общую ось. Грузы 1 и 2 массами m1 и m2, разматывая нити, намотанные на блоки, приводят их во вращение. Пренебрегая массой нитей и считая блоки однородными дисками массами М1 и М2 соответственно, определить скорость груза 2 как функцию времени, если движение начинается из состояния покоя и при вращении на блоки действует момент сил сопротивления , где α – постоянная.

Рис.29

 

Задача 32.Барабан 1 (рис.30) массы m1 и радиуса r приводится во вращение посредством груза 2 массы m2, привязанного к концу нерастяжимого троса. Трос переброшен через идеальный блок 3 и намотан на барабан 1. При вращении барабана появляется момент сил сопротивления M, пропорциональный времени, M = αt, где α – постоянная. Полагая, что движение начинается из состояния покоя, определить зависимость угловой скорости барабана от времени и момент времени, когда система снова остановится. Барабан считать однородным цилиндром, массой каната пренебречь.

Рис.30

 

Задача 33.Груз 1 (рис.31) массы m1, опускаясь вертикально вниз, раскручивает ступенчатый блок 2 посредством невесомой и нерастяжимой нити, которая намотана на колесо блока радиуса r1. На большее колесо блока, имеющее радиус r2, намотана другая нить, второй конец которой привязан к грузу 3 массы m, скользящему по гладкой наклонной плоскости с углом наклона . Блок состоит из однородных дисков массами и соответственно, жестко соединенных друг с другом, причем при вращении на блок действует момент сил сопротивления М = at2, где a – постоянная. Определить скорость v1(t) груза 1 и момент его остановки, если движение начинается из состояния покоя.

Рис.31

 

Задача 34.Шкив М (рис.32), вращающийся с угловой скоростью , тормозится при помощи ручного тормоза АВ. Сила, с которой давят на ручку тормоза, F = at, где a – постоянная. Считая шкив однородным диском радиуса r, определить, через какое время шкив остановится и сколько он совершит оборотов, если коэффициент трения между тормозоми шкивом f, длина рукоятки АВ = l, расстояние АС = b.

Рис.32

Задача 35. Находящаяся в вертикальной плоскости однородная пластина (рис.33) в виде прямоугольного треугольника АВС может вращаться вокруг вертикальной оси z, совпадающей со стороной АС. Масса пластины m, ее радиус инерции относительно указанной оси равен . В начальный момент времени из вершины А вдоль стороны АВ начинает двигаться точечное тело 1 массы m1 с относительной скоростью vr = at, где a – постоянная, а к пластине прикладывается вращающий момент M = bt, где b – постоянная. Определить угловое ускорение пластины. Угол наклона стороны АВ к горизонту равен .

Рис.33

Задача 36.Однородный горизонтальный диск (рис.34) (радиуса r и массы m может вращаться вокруг проходящей через его центр О вертикальной оси. Вдоль радиуса ОА по направляющей может двигаться точечное тело А массы m0. В начальный момент времени к диску приложили постоянный вращающий момент M, а тело А начало двигаться от точки О с относительной скоростью vr = at, где a – постоянная. Определить угловое ускорение диска.

Рис.34

 

Задача 37.Однородный горизонтальный диск (рис.35) радиуса r и массы m вращается вокруг проходящей через его центр О вертикальной оси под действием момента M = αt, где α – постоянная. По краю диска в противоположном вращению направлении движется точечное тело А массы m0 с относительной скоростью vr = at, где a – постоянная. Определить угловое ускорение диска.

Рис.35

 

Задача 38.Однородный горизонтальный диск (рис.36) радиуса r и массы m вращается вокруг проходящей через его центр О вертикальной оси под действием момента M = αt, где α – постоянная. По краю диска в направлении его вращения движется точечное тело А массы m0 с относительной скоростью vr = at2, где a – постоянная. Определить угловое ускорение диска.

Рис.36

 

Пример 14. Барабан 1 веса P начинает раскручиваться из состояния покоя под действием груза 2 веса Q(рис. 37). Определить зависимость угловой скорости вращения барабана от времени. Весом нити и трением барабана об ось пренебречь, барабан считать однородным диском радиуса r.

Рис.37

 

Решение. В качестве системы возьмем совокупность тел барабан + нить + груз (см. рис.37). Тогда внешними силами, действующими на выбранную систему, являются: силы тяжести барабана P и груза Q, а также реакция оси N. Направим ось Oz вдоль оси вращения барабана и запишем теорему об изменении момента импульса LZ системы в проекции на эту ось

Моменты сил P и N относительно выбранной оси равны нулю, так как линии их действия проходят через ось, а момент силы Q есть Mz(Q) = –Qr. Момент импульса системы складывается из моментов импульса барабана 1 (Lz1) и груза 2 (Lz2) относительно данной оси: Lz = Lz1 + Lz2, где , а Подставляя все эти выражения в (1), приходим к уравнению

интегрируя которое с учетом начального условия , получаем искомый закон изменения угловой скорости

 

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.