МЕХАНИЗАЦИЯ КРЫЛА. ВЛИЯНИЕ МЕХАНИЗАЦИИ НА АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ КРЫЛА, РАБОТА РУЛЕЙ
Рис. 20.
Предкрылок служит в основном для увеличения максимальных эксплуатационных углов атаки, а также выдвижные предкрылки увеличивают кривизну и толщину профиля при выпуске, что тоже увеличивает несущую способность крыла. Предкрылок как бы принудительно направляет верхний обтекающий поток ближе к поверхности, чем отодвигает aкр до более высоких значений.
Закрылок изменяет кривизну и толщину профиля если это поворотный закрылок или посадочный щиток и увеличивает подъёмную силу, но вместе с тем резко увеличивает лобовое сопротивление, что требует увеличения тяги или увеличения угла планирования. Такие закрылки весьма полезны для уменьшения посадочной скорости, однако из-за большого лобового сопротивления их проблематично применять при взлёте для уменьшения скорости отрыва и сокращения взлётной дистанции.
Рис. 22.
Выдвижные закрылки увеличивают кривизну профиля, толщину и площадь крыла, тем самым снижая удельную нагрузку на крыло. Удельной нагрузкой на крыло называется вес ЛА на единицу площади крыла. Измеряется в кг/м2. Чем меньше нагрузка на крыло, тем на меньшей скорости может летать ЛА. Поэтому большее распространение получили выдвижные закрылки. Они увеличивают одновременно и Cy за счёт изменения кривизны и толщины, и площадь крыла, снижая скорость ЛА, как бы адаптируя, подстраивая крыло самолёта к полёту на меньшей скорости.
Рис. 23.
Иногда используется дополнительный (промежуточный) маленький закрылок, называемый дефлектором.
Работа рулей аналогична работе поворотного закрылка с той лишь разницей, что отклоняясь в противоположную сторону, изменяется на противоположную и сила, создаваемая крылом, килём или стабилизатором.
Интерцепторы устанавливают на крыльях. Принцип работы схож с принципом работы посадочного щитка. при дифференциальном подъёме на крыльях они могут работать совместно с элеронами или вместо них. На посадке их применяют для резкого снижения подъёмной силы после касания самолётом земли, чтобы исключить подскакивание самолёта.
Рис. 24.
Триммер — это маленькая аэродинамическая поверхность на задней кромке руля, которая способна отклоняться. Триммер управляется из кабины и служит для снятия постоянных усилий с органов управления.
рис. 25
Небольшие усилия всегда присутствуют на ручке управления, они необходимы пилоту для ощущения рулей и являются результатом воздействия обтекающего потока на рули. Однако на разных режимах полёта среднее положение рулей различно, и для снятия постоянных значительных усилий служит триммер.
СИЛЫ, ДЕЙСТВУЮЩИЕ НА КРЫЛО НА РАЗЛИЧНЫХ РЕЖИМАХ ПОЛЁТА
Рис 26. Силы, действующие в горизонтальном полёте самолета
| В горизонтальном полёте на крыло воздействуют 3 силы.
R — полная аэродинамическая сила, которая раскладывается на 3 составляющие:
Y — подъёмная сила;
X — сила сопротивления;
Z — боковая сила.
G — сила веса;
P — сила тяги.
при этом P=X есть условие сохранения скорости
Y=G есть условия сохранения горизонтального полета,
| P=X+ Gsinq — условие постоянной скорости;
Gcosq=Y — условие постоянного q.
рис.27. Схема сил, действующих в наборе высоты
В наборе высоты сила G раскладывается в скоростной системе координат на две составляющие Gcosq(q — тета — угол наклона траектории) и Gsinq. Gcosq уравновешивается подъёмной силой Y, а Gsinq суммируется с силой X и образует суммарную силу, которая уравновешивается силой тяги.
Силы, возникающие при наборе высоты планером при старте с лебёдки, мы рассмотрим далее в специальной статье.
X= Gsinq — условие постоянной скорости;
Gcosq=Y — условие постоянного q.
рис.28. Схема сил, действующих на планировании
На планировании сила G раскладывается также на 2 составляющие Gcosq(q — тета — угол наклона траектории) и Gsinq. Gcosq уравновешивается подъемной силой Y, а Gsinq суммируется с силой X.
То есть на планировании роль силы тяги выполняет составляющая силы веса.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|