Сделай Сам Свою Работу на 5

Дифференциальные уравнения движения невязкой жидкости





Уравнение Эйлера служит одним из фундаментальных в гидравлике, наряду с уравнением Бернулли и некоторыми другими.

Изучение гидравлики как таковой практически начинается с уравнения Эйлера, которое служит исходным пунктом для выхода на другие выражения.

Попробуем вывести это уравнение. Пусть имеем бесконечно малый параллелепипед с гранями dxdydz в невязкой жидкости с плотностью ρ. Он заполнен жидкостью и движется как составная часть потока. Какие силы действуют на выделенный объект? Это силы массы и силы поверхностных давлений, которые действуют на dV = dxdydz со стороны жидкости, в которонаходится выделенный dV. Как силы массы пропорциональны массе, так и поверхностные силы пропорциональны площадям, на которые оказывается давление. Эти силы направлены к граням вовнутрь по нормали. Определим математическое выражение этих сил.

22. Уравнение Бернулли выражает закон сохранения энергии, связывающий удельную по весу энергию жидкости в двух сечениях потока.
Для элементарной струйки:

Здесь:
z1, z2 - расстояния от произвольно выбранной горизонтальной плоскости до центров тяжести рассматриваемых сечений 1,2,
P1,P2 - давления в центрах сечений,
U1,U2- местные скорости жидкости в сечениях 1 и 2,
V1,V2- средние скорости жидкости в сечениях 1 и 2,
- плотность жидкости, g-ускорение силы тяжести,
h1-2 -энергия единицы веса жидкости, потраченная на преодоление сил трения между сечениями 1 и 2.
-коэффициент Кориолиса (его значение зависит от степени неравномерности распределения скоростей в живом сечении потока, меняясь в пределах от 1 до 2).



Если ввести обозначения:

23.Уравне́ния Навье́ — Сто́кса — система дифференциальных уравнений в частных производных, описывающая движение вязкойньютоновской жидкости. Уравнения Навье — Стокса являются одними из важнейших в гидродинамике и применяются в математическом моделировании многих природных явлений и технических задач Уравнение Навье - Стокса - нелинейное дифференциальное уравнение второго порядка в частных производных, нелинейность которого обусловлена членом с конвективным ускорением. Его решение следует подчинить начальным и граничным условиям. Все соображения о начальных условиях для течения невязкой жидкости сохраняют свою силу и для вязкой жидкости. Принципиально новым является лишь изменение граничного условия на твердых границах потока. ля получения уравнения движения вязкой жидкости подставим значения нормальных и касательных напряжений в уравнение (1.17):



·

24.уравнение Бернулли для струйки идеальной несжимаемой жидкости постоянной плотности ρ, находящейся под действием только сил тяжести. В этом случае Б. у. имеет вид:

v2/2 + plρ + gh = const,

где g — ускорение силы тяжести. Если это уравнение умножить на ρ, то 1-й член будет представлять собой кинетическую энергию единицы объёма жидкости, а др. 2 члена — его потенциальную энергию, часть которой обусловлена силой тяжести (последний член уравнения), а др. часть — давлением p. Б. у. в такой форме выражает закон сохранения энергии. Если вдоль струйки жидкости энергия одного вида, например кинетическая, увеличивается, то потенциальная энергия на столько же уменьшается. Поэтому, например, при сужении потока, текущего по трубопроводу, когда скорость потока увеличивается (т.к. через меньшее сечение за то же время проходит такое же количество жидкости, как и через большее сечение), давление соответственно в нём уменьшается (на этом основан принцип работы расходомера Вентури).

 

25. Уравнение Бернулли для элементарной струйки реальной жидкости несколько отличаются от уравнения. При движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате, полная удельная энергия жидкости в предыдущем сечении будет больше полной удельной энергии; жидкости в последующем сечении на величину потерянной энергии. Потерянная энергия, или потерянный напор, обозначается kw и имеет линейную размерность.
Ураевнение Бернулли для реальной жидкости будет иметь вид:
z1 + p1/ρg + v12/2g = z2 + p2/ρg + v22/2g + hw



26. При применении уравнения Д. Бернулли для решения практических задач гидравлики следует помнить два основных условия:

1. уравнение Бернулли может быть применено только для тех живых сечений потока, в которых соблюдаются условия плавно изменяющегося движения. На участках между выбранными сечениями условия плавно изменяющегося движения могут и не соблюдаться;

2. гидродинамическое давление и, следовательно, высоту положения z можно относить к любой точке живого сечения, так как для любой точки живого сечения потока при плавно изменяющемся движении есть величина постоянная. Обычно двучлен удобно отнести для упрощения решения задач к точкам или на свободной поверхности, или на оси потока.

 

 

27. Характерно различие между ламинарным (параллельно струйным) и турбулентным (извилистым) режимами течения жидкостей. Причиной образования любой извилистости является разность между тем, что может делать предмет, и тем, что заставляют его делать [1]. В русловедении разность между транспортирующей способностью потока и поступлением наносов в реку является причиной образования различных типов русел. При относительно малом поступлении наносов образуется извилистость, а при относительно большом поступлении наносов – русловая мнгогорукавность [1]. Подробное описание разности, как причины физических явлений и процессов можно найти в книге В.В. Митрофанова [2].Аналогично критерием ламинарного и турбулентного режимов движения жидкостей должна быть такая же разность. Как раз именно так интерпретируют число Рейнольдса Т. Карман и сам Рейнольдс в [3]. Число, характеризующее режим движения жидкости, является отношением скорости движения молекул рассматриваемого объёма жидкости к скорости движения самого объёма жидкости в целом. Становится ясным физический смысл числа Re. Числитель представляет собой интенсивность движения всего объёма жидкости, а знаменатель – темп теплового движения. При равенстве скоростей наблюдается ламинарное движение жидкости, а при превышении местных скоростей над переносной жидкость двигается турбулентным режимом.

 

29. Если высота выступов шероховатости Δ меньше, чем толщина ла­минарной пленки (Δ <δ), то в этом случае шероховатость стенок не влияет на характер движения и соответственно потери напора не зави­сят от шероховатости, а стенки называются гидравлически гладкими.

Когда высота выступов шероховатости превышает толщину лами­нарной пленки (Δ <δ), то потери напора зависят от шероховатости, и такие трубы называютсягидравлически шероховатыми.В третьем слу­чае, являющемся промежуточным между двумя вышеуказанными, аб­солютная высота выступов шероховатости примерно равна толщине ламинарной пленки. В этом случае трубы относятся к переходной об­ласти сопротивления.Толщина ламинарной пленки определяется по формуле:

(1.87)

30. Уравнение может быть преобразовано в универсальную формулу Вейсбаха-Дарси, которая окончательно записывается так:

где λ - коэффициент гидравлического трения, который для ламинарного потока вычисляется по выражению:

Однако при ламинарном режиме для определения коэффициента гидравлического трения λ Т.М. Башта рекомендует при Re < 2300 применять формулу

31. Потери энергии (уменьшение гидравлического напора) можно наблюдать в движущейся жидкости не только на сравнительно длинных участках, но и на коротких. В одних случаях потери напора распределяются (иногда равномерно) по длине трубопровода - это линейные потери; в других - они сосредоточены на очень коротких участках, длиной которых можно пренебречь, - на так называемых местных гидравлических сопротивлениях: вентили, всевозможные закругления, сужения, расширения и т.д., короче всюду, где поток претерпевает деформацию. Источником потерь во всех случаях является вязкость жидкости.

Следует заметить, что потери напора и по длине и в местных гидравлических сопротивлениях существенным образом зависят от так называемого режима движения жидкости.

32. Для любого вида местного сопротивления потери напора могут быть определены в долях скоростного напора по формуле Вейсбаха:

 

,(2)

 

где - безразмерный коэффициент конкретного местного сопротивления; V – средняя скорость потока.

Если средняя скорость потока на входе в местное сопротивление и после него не остается постоянной, например, вследствие расширения или сужения канала, потеря напора обычно определяется по скоростному напору за местным сопротивлением.

33. Рассмотрим различные случаи истечения жидкости из резервуаров, баков, котлов через отверстия и насадки (коротки трубки различной формы) в атмосферу или пространство, заполненное газом или той же жидкость. В процессе такого истечения запас потенциальной энергии, которым обладает жидкость, находящаяся в резервуаре, превращается в кинетическую энергию свободной струи.

Основным вопросом, который интересует в данном случае, является определение скорости истечения и расхода жидкости для различных форм отверстий и насадков

 

28. Переход от ламинарного режима к турбулентному наблюдается при определенной скорости движения жидкости. Эта скорость называется критической υ кр.Значение этой скорости прямо пропорционально кинематической вязкости жидкости и обратно пропорционально диаметру трубы.

где ν - кинематическая вязкость;
k - безразмерный коэффициент;
d - внутренний диаметр трубы.Входящий в эту формулу безразмерный коэффициент k, одинаков для всех жидкостей и газов, а также для любых диаметров труб. Этот коэффициент называется критическим числом Рейнольдса Reкр и определяется следующим образом:

Как показывает опыт, для труб круглого сечения Reкр примерно равно 2300.

Таким образом, критерий подобия Рейнольдса позволяет судить о режиме течения жидкости в трубе. При Re < Reкр течение является ламинарным, а при Re > Reкр течение является турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при Re примерно равно 4000, а при Re = 2300…4000 имеет место переходная, критическая область.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.