микроорганизмов – продуцентов белков и антибиотиков
ОТЧЁТ О САМОСТОЯТЕЛЬНОЙ РАБОТЕ
(СРС)
по дисциплине
«ОБЩАЯ БИОТЕХНОЛОГИЯ»
на тему Субстраты и особенности культивирования
микроорганизмов – продуцентов белков и антибиотиков
Выполнил:
Студент ________________ Наумова Е.И. III-ФПП-5
Принял:
Руководитель ________________________Чечина О.Н.
Отметка о защите________________________________
Преподаватель _______________________Чечина О.Н.
Самара 2013
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 3
1.ОБЗОР ЛИТЕРАТУРЫ 4
1.1. Продуценты белка 4
1.2. Субстраты для культивирования микроорганизмов 6
с целью получения белка
1.3. Особенности культивирования продуцентов 8
антибиотиков
1.4. Перспективы развития производства белков и 13
антибиотиков
ВЫВОДЫ 15
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 16
ВВЕДЕНИЕ
Микроорганизмы начали использовать в производстве белковых продуктов задолго до возникновения микробиологии. Достаточно упомянуть всевозможные разновидности сыра, а также продукты, получаемые путем ферментации соевых бобов. И в первом, и во втором случае питательной основой является белок. При выработке этих продуктов при участии микробов происходит глубокое изменение свойств белоксодержащего сырья. В результате получают пищевые продукты, которые можно дольше хранить (сыр) или удобнее потреблять (соевый творог). Микробы играют роль в производстве некоторых мясных продуктов, предназначенных для хранения. Так, при изготовлении некоторых сортов колбасы используется кислотное брожение, обычно при участии комплекса молочнокислых бактерий. Образовавшаяся кислота способствует сохранности продукта и вносит вклад в формирование его особого вкуса [7].
В настоящее время микроорганизмы продуцируют десятки видов соединений - аминокислот, антибиотиков, белков, витаминов, липидов. Микробиологический синтез различных веществ играет ключевую роль в биотехнологическом производстве. Начало современной промышленной микробиологии было положено в 40-х годах, когда наладили производство пенпциллинов методами ферментации нуклеиновых кислот, полисахаридов, пигментов, сахаров, ферментов и т. д.
Антибиотики — это продукты обмена микроорганизмов, способные избирательно подавлять рост или убивать бактерии, микроскопические грибы, вирусы и др., а также задерживать или полностью подавлять развитие некоторых злокачественных новообразований. Биотехнология антибиотиков – это весьма сложное, но, безусловно, необходимое производство [7].
Целью моей работы является обзор литературы по столь актуальной теме, как субстраты и особенности культивирования микроорганизмов – продуцентов белков и антибиотиков, а также представление найденного материала в форме научного отчета и устного доклада.
1.ОБЗОР ЛИТЕРАТУРЫ
1.1.Продуценты белка
В современных биотехнологических процессах, основанных на использовании микроорганизмов, продуцентами белка служат дрожжи, бактерии, одноклеточные водоросли и микроскопические грибы.
С технологической точки зрения наилучшими из вышеперечисленных являются дрожжи. Их преимущество заключается прежде всего в "технологичности": дрожжи легко выращивать в условиях производства, так как они характеризуются высокой скоростью роста, обладают устойчивостью к посторонней микрофлоре, способны усваивать любые источники питания, легко отделяются, не загрязняют воздух спорами. Их клетки содержат до 25% сухих веществ. Наиболее ценный компонент дрожжевой биомассы - белок, который по составу аминокислот превосходит белок зерна злаковых культур и лишь немного уступает белкам молока и рыбной муки. Биологическая ценность такого белка определяется наличием значительного количества незаменимых аминокислот. По содержанию витаминов дрожжи превосходят все белковые корма, в том числе и рыбную муку. Кроме того, их клетки содержат микроэлементы и значительное количество жира, в котором преобладают ненасыщенные жирные кислоты. При скармливании кормовых дрожжей коровам повышаются удои и содержание жира в молоке, а у пушных зверей улучшается качество меха. Интерес представляют и дрожжи, обладающие гидролитическими ферментами: их использование позволяет избежать дорогостоящую стадию гидролиза полисахаридсодержащих отходов. Известно более 100 видов дрожжей, которые хорошо растут на крахмале как на единственном источнике углерода. Среди них особенно выделяются два вида, которые образуют как глюкоамилазы, так и β-амилазы и растут с высоким экономическим коэффициентом: Schwanniomyces occidentalis и Saccharomycopsis fibuliger. Оба вида - перспективные продуценты белка и амилолитических ферментов на крахмалсодержащих отходах. Дрожжи из рода Kluyveromyces хорошо растут на инулине - основном запасном веществе в клубнях топинамбура - важной кормовой культуры, которая также может быть использована для получения дрожжевого белка.
В последнее время в качестве продуцентов белка стали использовать бактерии, которые отличаются высокой скоростью роста и содержат в биомассе до 80% белка. Бактерии хорошо поддаются селекции, что позволяет получать высокопродуктивные штаммы. Их недостатками являются трудная осаждаемость, обусловленная малыми размерами клеток, значительная чувствительность к фаговым инфекциям и высокое содержание в биомассе нуклеиновых кислот. Последнее обстоятельство неблагоприятно только в том случае, если предусматривается пищевое использование продукта.
Следующую группу продуцентов белка составляют грибы. Они привлекают внимание исследователей благодаря способности утилизировать самое разнообразное по составу органическое сырье: мелассу, молочную сыворотку, сок растений и корнеплодов, лигнин- и целлюлозосодержащие твердые отходы пищевой, деревообрабатывающей, гидролизной промышленности. Грибной мицелий богат белковыми веществами, которые по содержанию незаменимых аминокислот ближе всего к белкам сои. Вместе с тем белок грибов богат лизином, основной аминокислотой, недостающей в белке зерновых культур. Грибные белки имеют достаточно высокую биологическую ценность и хорошо усваиваются организмом. Положительным фактором является и волокнистое строение выращенной культуры. Это позволяет имитировать текстуру мяса, а с помощью различных добавок - его цвет и запах. Хранят грибной мицелий обычно в замороженном виде.
Источниками белковых веществ могут служить и водоросли. Для питания они используют углекислый газ атмосферы. Выращивают водоросли, как правило, в поверхностном слое прудов, где с площади 0,1 га можно получить столько же белка, сколько с 14 га посевов фасоли. Белок водорослей пригоден не только для кормовых, но и для пищевых целей [1;3].
1.2.Субстраты для культивирования микроорганизмов с целью получения белка
В качестве источников энергии микроорганизмы используют самые разнообразные субстраты - нормальные парафины и дистилляты нефти, природный газ, спирты, растительные гидролизаты и отходы промышленных предприятий.
Для выращивания микроорганизмов с целью получения белка хорошо бы иметь богатый углеродом, но дешевый субстрат. Этому требованию вполне отвечают нормальные (неразветвленные) парафины нефти. Выход биомассы может достигать при их использовании до 100% от массы субстрата. Качество продукта зависит от степени чистоты парафинов. При использовании парафинов достаточной степени очистки, полученная дрожжевая масса может успешно применяться в качестве дополнительного источника белка в рационах животных [1].
Одним из перспективных источников углерода для культивирования продуцентов белка высокого качества считается метиловый спирт. Его можно получать методом микробного синтеза на таких субстратах, как древесина, солома, городские отходы. Использование метанола в качестве субстрата затруднено из-за его химической структуры: молекула содержит один атом углерода, тогда как синтез большинства органических соединений осуществляется через двухуглеродные молекулы. На метаноле как на единственном источнике углерода и энергии способны расти около 25 видов дрожжей, в том числе Pichia polymorpha, Pichia anomala, Yarrowia lipolytica. Наилучшими продуцентами на этом субстрате считаются бактерии, потому что они могут расти на метаноле с добавлением минеральных солей. Процессы получения белка на метаноле достаточно экономичны. По данным концерна Ай-Си-Ай (Великобритания), себестоимость продукта, производимого на метаноле, на 10-15% ниже, чем при аналогичном производстве, базирующемся на основе высокоочищенных n-парафинов.
Использование этанола как субстрата снимает проблему очистки биомассы от аномальных продуктов обмена с нечетным числом углеродных атомов. Стоимость такого производства несколько выше.
В США, Японии, Канаде, ФРГ, Великобритании разработаны технологические процессы получения белка на природном газе. Выход биомассы в этом случае может составлять 66% от массы субстрата. Главные достоинства метана (кстати сказать, основного компонента природного газа) - доступность, относительно низкая стоимость, высокая эффективность преобразования в биомассу метаноокисляющими микроорганизмами, значительное содержание в биомассе белка, сбалансированного по аминокислотному составу. Бактерии, растущие на метане хорошо переносят кислую среду и высокие температуры, в связи с чем устойчивы к инфекциям.
Субстратом для микробного синтеза может быть и минеральный углерод - углекислый газ. Окисленный углерод в данном случае с успехом восстанавливается микроводорослями при помощи солнечной энергии и водородоокисляющими бактериями при помощи водорода [3].
Исключительно доступным и достаточно дешевым источником углеводов для производства микробного белка является растительная биомасса, так как любое растение имеет в своем составе разнообразные сахара. В качестве продуцентов используют штаммы Candida scotti и C.tropicalis.
Особого внимания заслуживают способы прямой биоконверсии продуктов фотосинтеза и их производных в белок с помощью грибов. Эти организмы благодаря наличию мощных ферментных систем способны утилизировать сложные растительные субстраты без предварительной обработки. Содержание белка в конечном продукте (высушенном грибном мицелии) составляет 45%.
В большинстве стран - производителей молока традиционным способом утилизации сыворотки является скармливание её животным. Степень конверсии белка сыворотки в белок животного весьма невысока (для выработки 1 кг животного белка необходимо 1700 кг сыворотки). В последние 10-15 лет из сыворотки методом ультрафильтрации выделяют белки высокого качества, на основе которых делают заменители сухого обезжиренного молока и другие продукты. Концентраты можно использовать как пищевые добавки и компоненты детского питания. Из сыворотки производится и молочный сахар - лактоза, применяемая в пищевой и медицинской промышленности. Из всех известных микроорганизмов самым высоким коэффициентом конверсии белка сыворотки в микробный белок обладают дрожжи. Активный катаболизм лактозы особенно характерен для дрожжей из рода Kluyveromyces [2].
1.3.Особенности культивирования продуцентов антибиотиков
Методы культивирования продуцентов антибиотиков.
В современных условиях наиболее перспективным методом выращивания микроорганизмов — продуцентов антибиотиков признан метод глубинного культивирования. Метод состоит в том, что микроорганизм развивается в толще жидкой питательной среды, через которую непрерывно пропускается стерильный воздух, и среда перемешивается.
Можно указать четыре основные модификации глубинного способа выращивания микроорганизмов.
1) Периодическое культивирование. При этом способе весь процесс развития микроорганизмов полностью завершается в одном ферментере, после чего ферментер освобождается от культуральной жидкости, тщательно промывается, стерилизуется и вновь заполняется свежей питательной средой. Среда засевается изучаемым микроорганизмом, и процесс возобновляется.
2) Отъемный метод. Культивирование микроорганизмов осуществляется в ферментерах с периодическим отбором части объема культуральной жидкости (от 30 до 60% общего объема). Объем культуральной жидкости в ферментере при этом доводится свежей питательной средой до исходного уровня.
3) Батарейный способ. Развитие микроорганизмов проходит в ряду последовательно соединенных ферментеров. Культуральная жидкость на определенной стадии развития микроорганизма перекачивается из первого ферментера во второй, затем из второго — в третий. Освобожденный ферментер немедленно заполняется свежей питательной средой, засеянной микроорганизмом. При этом способе выращивания микроорганизмов происходит более рациональное использование емкостей.
4) Непрерывное культивирование. Метод принципиально отличен от указанных модификаций глубинного культивирования продуцентов антибиотиков. В основе этого метода лежит то, что развитие микроорганизма происходит в условиях непрерывного протока питательной среды, что позволяет поддерживать развитие микроорганизма на определенной стадии его роста [4].
Подготовка среды для культивирования продуцента антибиотика.
Для каждого продуцента антибиотика разрабатывается оптимальная питательная среда. В зависимости от природы используемого микроорганизма в качестве источника углерода возможно применение различных субстратов. Например, для получения пенициллина лучшим источником углерода и энергии является глюкоза и лактоза; грамицидина – глицерин и соли янтарной кислоты; стрептомицина и неомицина – глюкоза. Среда должна соответствовать определенным требованиям:
1) обеспечивать максимальное образование антибиотика;
2) состоять из относительно дешевых компонентов;
3) иметь хорошую фильтрующую способность;
4) обеспечивать применение наиболее экономичных приемов выделения и очистки антибиотиков.
Стерилизация питательных сред в промышленных условиях осуществляется двумя основными методами: периодическим и непрерывным.
Периодический метод стерилизации применяется при использовании небольших объемов среды и состоит в том, что среда нагревается до определенной температуры (120—130°С) непосредственно в ферментерах или в специальных котлах-стерилизаторах, выдерживается при этой температуре в течение 30—60 мин (в зависимости от объема среды и ее состава), после чего охлаждается до 27—30°С.
Непрерывный метод стерилизации целесообразно применять при использовании больших объемов среды. Приготовленная среда из специального сосуда с помощью насоса подается в стерилизационную колонку, через которую пропускается острый пар. Пар подается сверху по внутренней трубе, имеющей щелевидные прорези, благодаря чему он поступает в среду и происходит быстрый ее нагрев. Среда, нагретая в колонке до температуры около 130°, поступает в специальный аппарат, где выдерживается 5-10 минут. Из выдерживателя стерильная среда поступает в змеевиковый холодильник, охлаждается до 30—35°С (на выходе) и попадает в ферментер.
Непрерывный метод стерилизации имеет ряд преимуществ по сравнению с периодическим:
1) при непрерывном методе стерилизации каждый элементарный объем среды находится при высокой температуре короткое время;
2) благодаря более высоким температурам стерилизации и короткой экспозиции деструкция компонентов питательной среды минимальна;
3) процесс стерилизации всего объема питательной среды растянут во времени, этим обеспечивается более равномерная разгрузка котельной;
4) процесс легко контролируем и управляем [4].
Подготовка посевного материала.
Подготовка посевного материала — одна из ответственнейших операций в цикле биотехнологического метода получения антибиотиков. От количества и качества посевного материала зависит как развитие культуры в ферментере, так и биосинтез антибиотика. Процесс подготовки - многоступенчатый. Микроорганизм предварительно выращивают на агаризированной среде в пробирке, затем из пробирки делают высев в колбы с жидкой питательной средой и проводят две генерации при глубинном выращивании на качалках в течение 2—3 суток для каждой. Из второй генерации культуры в колбе делают посев в небольшой инокулятор, после чего хорошо развившуюся культуру переносят в более крупный инокулятор, откуда и производят посев в основном ферментере. Для посева в основной ферментер используют от 5 до 10 объемных процентов посевного материала.
Развитие продуцента антибиотика в ферментере.
Процесс развития микроорганизма в ферментерах проходит при строгом контроле всех его стадий, очень точно выполняется разработанный регламент условий развития организма — продуцента антибиотика. Большое внимание уделяется поддержанию заданной температуры культивирования, активной кислотности среды, степени аэрации и скорости работы мешалки. В процессе развития организма осуществляется биологический контроль, учитывается потребление организмом основных питательных компонентов субстрата: источников углерода, азота, фосфора; внимательно следят за образованием антибиотика.
Существенное внимание при развитии продуцента в ферментерах обращают на процесс пеногашения. При продувании воздуха через культуру микроорганизма происходит обильное образование пены, которая существенно нарушает протекание всего процесса. Основная причина ее появления — наличие белковых веществ в среде и высокая вязкость, обусловленная обильным накоплением биомассы.
Для борьбы с пеной в ферментерах при антибиотикообразовании используют различные поверхностно-активные вещества: растительные масла, животный жир, а иногда минеральные масла, спирты и высшие жирные кислоты [4].
Предварительная обработка культуральной жидкости, выделение и химическая очистка антибиотиков.
В процессе развития микроорганизмов образуемые ими антибиотики в большинстве случаев почти полностью выделяются из клеток в окружающую среду. Однако в ряде случаев в культуральную жидкость выделяется лишь часть антибиотика, а другая часть сохраняется внутри клеток. У некоторых же продуцентов антибиотик почти полностью содержится в клетках организма.
В зависимости от того, где антибиотическое вещество сосредоточено, применяют соответствующие методы его извлечения. Так, если антибиотик находится в культуральной жидкости, его выделяют методами экстракции растворителями, не смешивающимися с жидкой фазой, осаждают в виде нерастворимого соединения или сорбируют ионообменными смолами. Выделение антибиотика из клеток микроорганизмов осуществляют с помощью экстракции органическими растворителями. В случае если антибиотик содержится в культуральной жидкости и в клетках продуцента, первичной операцией его выделения является перевод антибиотика в фазу, из которой наиболее целесообразно его изолировать. Например, антибиотик, содержащийся в культуральной жидкости, и клетки с антибиотическим веществом переводят в осадок, из которого антибиотик экстрагируют.
Отделение нативного раствора от биомассы и взвешенных частиц проводят методами фильтрации или центрифугирования.
Антибиотические вещества под влиянием жестких внешних факторов (повышенной температуры, высокой кислотности или щелочности и др.) в ряде случаев теряют свои свойства, инактивируются. Поэтому при их выделении и очистке необходимо соблюдать максимум осторожности.
Основными методами очистки антибиотиков являются следующие.
Метод экстракции. Нередко в целях очистки антибиотика от различных примесей его многократно переводят из одного растворителя в другой с предварительным осаждением (кристаллизацией). Такой прием носит название перекристаллизации.
Ионообменная сорбция. Метод состоит в том, что при пропускании водных растворов антибиотиков, являющихся по химической природе кислотами, основаниями или амфотерными соединениями, через колонки с соответствующими ионообменными смолами они сорбируются на них, а раствор с частью примесей, имеющих противоположный антибиотику заряд, проходит через колонку. Адсорбированный на смоле антибиотик десорбируют, в результате чего получают значительно очищенный и концентрированный препарат.
Метод осаждения. Антибиотик связывают с органическими или неорганическими веществами с целью получения соединения, выпадающего в осадок; последний с помощью фильтров или центрифугирования отделяют от нативного раствора, промывают и высушивают. Образовавшееся соединение растворяют и антибиотик экстрагируют или вновь осаждают [2].
1.4.Перспективы развития производства белков и антибиотиков
Сегодня огромный интерес представляет использование микроорганизмов в качестве источника белка и витаминов при производстве пищевых продуктов. Перспектива и экономическая целесообразность употребления микроорганизмов в технологии производства пищевых продуктов диктуется рядом факторов:
1) возможностью использования самых разнообразных химических соединений, в том числе отходов производства, для культивирования микроорганизмов;
2) высокой интенсивностью синтеза белков;
3) относительно несложной технологией культивирования микроорганизмов;
4) относительно высоким содержанием белка и витаминов;
5) повышенным содержанием незаменимых аминокислот по сравнению с растительными белками;
6) возможностью направленного генетического влияния на химический состав микроорганизмов в целях совершенствования белковой и витаминной ценности продукта (ГМО).
В настоящее время мировой дефицит белка составляет около 15 млн. т. Наиболее перспективен микробиологический синтез, что следует из представленных ниже данных. Если для крупного рогатого скота требуется 5 лет для удвоения белковой массы, для свиней – 4 мес., для цыплят – 1 мес., то для бактерий и дрожжей – 1–6 ч. Мировое производство пищевых белковых продуктов за счет микробного синтеза составляет более 15 тыс. т в год [5].
Организация крупномасштабного производства антибиотиков сыграла решающую роль в становлении промышленной биотехнологии. Количество открываемых антибиотиков постоянно растет. В 1940 г. было известно всего 6 антибиотиков, а в настоящее время описано более 12 000 аналогичных соединений, из которых в клинике применяют около 200 препаратов. 97% известных антибиотиков токсичны, поэтому в практике не используются. Изыскание новых антибиотиков обусловлено как потребностями практики, так и накоплением резистентных форм микроорганизмов по отношению ко многим антибиотикам.
Главное направление получения новых антибиотиков состоит в химической трансформации природных молекул для создания полусинтетических антибиотиков. Методы получения антибиотиков путем химического синтеза чрезвычайно сложны и пока не могут конкурировать с их биосинтезом методами биотехнологии [5].
ВЫВОДЫ
Изучив большой объем литературы на тему «Субстраты и особенности культивирования микроорганизмов – продуцентов белков и антибиотиков», я пришла к выводу, что развитие производства белков и антибиотиков важная и необходимая задача современной биотехнологии. Ежегодно делаются новые научные открытия в этой отрасли. Еще буквально несколько лет назад те знания в сфере биотехнологии, которыми мы владеем сегодня, были чем-то недостижимым и недосягаемым. На мой взгляд, перспективы в развитии производства белков и антибиотиков достаточно радужные. Возможно, через несколько лет мы искореним дефицит белка и сможем найти лекарство от болезней, которые сегодня считаются неизлечимыми.
Биотехнология многолика и по своим историческим корням, и по своей современной структуре, объединяющей элементы фундаментальных наук и прикладных исследований. Её развитие позволяет существенно повышать эффективность использования природных ресурсов, решать экологические проблемы, создавать новые источники энергии. Очевидно, что новые «скачки» биотехнологии глубоко скажутся на судьбе человечества [6].
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1.Быков В.А. Производство белковых веществ / В.А. Быков, М.Н. Манаков, В.И. Панфилов и др. – М.: Высшая школа, 1987. – 142 с.
2.Воробьева А.И. Промышленная микробиология. – М.: Изд. Московского университета, 1989 г.
3.Грачёва И.М. Технология микробных белковых препаратов, аминокислот и жиров / И.М. Грачёва, Н.М. Гаврилова, Л.А. Иванова. – М.: Пищевая промышленность, 1980. – 448 с.
4.Егоров Н.С. Основы учения об антибиотиках / Н.С. Егоров. – М.: Высшая школа, 1986. – 448 с.
5.Рычков Р.С., Попов В.Г. Биотехнология: перспективы развития // Биотехнология. – М.: Наука, 1984.
6. Сассон А. Биотехнология: свершения и надежды. - М.: Мир, 1987. - 411 с.
7. Шлегель Г. Общая микробиология. - М.: Мир, 1987. - 566 с.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|