Сделай Сам Свою Работу на 5

Регуляция экспрессии активности генов у эукатиот

Еукариоты имеют более сложную организацию, чем прокариоты, Например, в организме человека насчитывается более 200 разных типов клеток и 100 тысяч белков. Контроль экспрессии генов у эукариот включает не только механизмы, существующие у эукариот, но и механизмы, присущие только эукариотам.

Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:

- на уровне структурной организации генома (претранскрипционный контроль)

- на уровне транскрипции. Существует транскрипционная и посттранскрипционная регуляция. Регулироваться может сам процесс транскрипции, дозревание мРНК (процессинг), транспорт и деградация мРНК.

- на уровне трансляции – через фосфорилирование-/дефосфорилирование белковых факторов трансляции.

- на пострансляционном уровне – через регуляцию процессов формирования белковой молекулы, ее транспорта, активности и деградации. Претранскрипционный контроль экспрессии генов у эукариот. Геном эукариот содержит много нуклеотидов, но лишь 2-5% ДНК используется для кодировки белков. Наличие у ДНК не только кодирующих, но и регуляторных (сигнальных) участков, значительного количества сайтов, которые не транскрибируются, составляет особенность генома эукариот. Хотя все соматические клетки содержат идентичный геном, но в разных типах клеток экспрессируются различные гены, а это свидетельствует о существовании механизмов, которые обеспечивают стабильную экспрессию в течение жизни клетки одних генов и торможения экспрессии других.

А. Структурна та химическая модификация генома а) роль упаковки хроматина. В ядрах дифференцированных клеток хроматин так упакован, что только небольшое число генов (до 1%) доступно для транскрипции. В участках гетерохроматина ДНК упакована очень плотно и недоступна для транскрипции, тогда как в участках эухроматина, имеющего рыхлую упаковку, доступна для РНК-полимеразы. В разных типах клеток в область эухроматина попадают различные гены, а это означает, что в разных тканях транскрибируются различные гены. б) химическая модификация белков хроматина. Гистоновые и негистоновые белки, которые образуют прочные комплексы с ДНК, препятствуют использованию ДНК в процессах репликации или транскрипции. Ковалентная модификация (ацетилирование, фосфорилирование, метилирование, гликозилирование и АДФ-рибозилирование) изменяет заряд и другие свойства ядерных белков и может уменьшить или увеличить их взаимодействие с ДНК. Например, присоединение остатков уксусной кислоты к аминогруппам лизина (ацетилирование) в гистонах уменьшает положительный заряд этих белков, благодаря чему гистоны отсоединяются от ДНК, а на освобожденных от гистонов участках может происходить считывание информации. Поэтому ацетилирование пистонов усиливает скорость транскрипции. в) метилирование ДНК. Метилирование - это вариант эпигенетической регуляции активности генов, который не ведет к изменению нуклеотидной после- довательности ДНК. ДНК-метилтрансферазы переносят метильную группу от S- аденозилметионина на цитозин с образованием 5-метилцитозина. Метилируется около 5% остатков цитозина ДНК в области СрG-островков (последовательностей от 500 до 2000 нуклеотидов с высоким содержанием гуанина и цитозина). Эти островки локализуются в регуляторных элементах гена, промоторах. Метилирование приводит к временной инактивации гена и блокировки его транскрип- ции. Однако конечный биологический результат метилирования определяется функцией гена. Если метилируется ген белка-активатора, то это ведет к торможению определенной функции клетки, а если ген белка-репрессора, то это усиливает определенную функцию. Например, метилирование гена-супрессора опухолевого роста (белка р53) способствует развитию опухолей. Метилирование - это обратимый процесс и вместе с метилированием существует процесс деметилирования. Однако, метилирование некоторых генов является необратимым, в частности генов, которые функционируют во время эмбриогенеза, а затем становятся ненужными. Б. Изменение количества генов. а) Амплификация - это процесс увеличения копий соответствующих генов. Молекулярной основой амплификации является многократная (взрывообразная) репликация одного гена, или его фрагмента. Амплифицированные участки могут располагаться в хромосоме друг за другом (тандемный) или образовывать внехромосомные фрагменты ДНК (двойные минихромосомы). Способны к амплификации гены металотионеина (белка, связывающего ионы тяжелых металлов), дигидрофолатредуктази, многих других белков. При поступлении в организм ионов тяжелых металлов или метотрексата (ингибитора дигидрофолдатредуктазы происходит взрывообразное усиление синтеза этих белков. Явление амплификации лежит в основе полимеразной цепной реакции (ПЦР). Для проведения ПЦР используют РНК-праймеры (последовательности специфичны тем участкам ДНК, которые исследуются), а затем ДНК-полимераза реплицирует только те участки ДНК, которые отвечают праймеру. С применением ПЦР проводят диагностику вирусных и бактериальных инфекций, поскольку ПЦР дает возможность выявить ДНК и РНК возбудителей в организме хозяина. Метод ПЦР является основным в выявлении мутаций и генетического полиморфизма, установлении отцовства, этнической принадлежности и т.д. б) потеря генетического материала. Это редкий способ регуляции и, например, проявляется потерей ядра при дозревании эритроцитов или потери части генетического материала при дозревании лимфоцитов . В.Перестройка генов (генетические рекомбинации или реаранжирование) Перестройка генов – это обмен фрагментами ДНК между различными генами или объединение генов из различных биологических источников. Механизм рекомбинаций включает разрезание реципиентной ДНК и включение инородных фрагментов (транспозонов) из другой хромосомы или другого локуса той же хромосомы. Способность транспозонов встраиваться в молекулы других ДНК определяется наличием на их концах особенных фрагментов – инсерционных последовательностей. К рекомбинациям, присущим прокариотам, принадлежат: а) трансформация– включение в геном реципиентного микроорганизма донорной ДНК погибшей клетки того же вида; б) трансдукция – перенос бактериофагом фрагмента ДНК одного микроорганизма в геном другого реципиентного организма; в) конъюгация– процесс полового размножения у бактерий, который заключается в перенесении фрагмента ДНК из донорной в реципиентную клетку. У эукариот генетические рекомбинации обеспечивается механизмом кроссинговера (обмен идентичными участками между гомологичними хромосомами во время мейоза), который является необходимым элементом формирования половых клеток. Именно рекомбинация родительских хромосом при образовании гамет - главный фактор комбинативной изменчивости у людей. Процессы перемещения отдельных генов, или групп генов в другое место генома имеют место в В-лимфоцитах, гены которых кодируют образование иммуноглобулинов. Имеется несколько типов иммуноглобулинов (IgG, IgA, IgM, IgD, IgE), которые отличаются по типу тяжелых и легких цепей. В каждой белковой цепи иммуноглобулина существуют константные и вариабельные участки (соответственно, с постоянным или переменным составом аминокислот). Легкие цепи экспрессируються генами 3-х семейств, а тяжелые цепи – 4-х семейств. Каждое семейство насчитывает десятки и сотни генов. Благодаря рекомбинации генов, принадлежащим семействам генов легких и тяжелых цепей, становится возможным образование огромного количества (до 108) вариантов генов и, соответственно, столько же вариантов иммуноглобулинов с разной антигенной специфичностью. Транспозон – это последовательность ДНК, способная перемещаться в середине генома. Транспозоны принадлежат к так называемым мобильным элементам генома (к которым относят плазмиды и инсерционные элементы). Различают ДНК-транспозоны и ретротранспозоны. Перенос и вставка ДНК- транспозонов катализируется ферментом транспозазой (код фермента присутствует в самом транспозоне). Ретротранспозоны перемещаются по геному путем обратной транскрипции с их РНК (как ретровирусы).





©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.