Сделай Сам Свою Работу на 5

Солнечные водоподогреватели (гелиоводоподогреватели).





Преобразование солнечной энергии в тепловую обеспечивается за счет способности атомов вещества поглощать электромагнитное излучение. При этом энергия электромагнитного излучения преобразуется в кинетическую энергию атомов и молекул вещества, то есть в тепловую энергию. Результатом этого является повышение температуры тела.

Для энергетических целей наиболее распространенным является использование солнечного излучения для нагрева воды в системах отопления и горячего водоснабжения.

Основным элементом солнечной нагревательной системы является приемник, в котором происходит поглощение солнечного излучения и передача энергии жидкости. Наиболее распространенными являются плоские (нефокусирующие) приемники, позволяющие собирать как прямое, так и рассеянное излучение и в силу этого способные работать также и в облачную погоду. С учетом также их относительно невысокой стоимости они являются предпочтительными при нагревании жидкостей до температур ниже 100 оС.

На рис.15 представлены различные варианты приемников солнечного излучения.

Простые приемники (рис.1, а-д) содержат весь объем жидкости, которую необходимо нагреть.



Приемники более сложной конструкции (рис.15, е-и) нагревают за определенное время только небольшое количество жидкости, которая затем, как правило, накапливается в отдельном резервуаре, что позволяет снижать теплопотери системы в целом.

 

Рис. 15. Последовательность приемников солнечного излучения в порядке возрастания их эффективности и стоимости

Рис.15,а – открытый резервуар на поверхности земли (например, бассейн) – простейший возможный нагреватель воды. Повышение температуры воды ограничено высоким коэффициентом отражения поверхности воды, теплоотдачей к земле и воздуху, затратой части поглощенного тепла на испарение воды.

Рис.15,б – открытый резервуар, теплоизолированный от земли. Повышение температуры воды ограничено высоким коэффициентом отражения поверхности воды, теплоотдачей к воздуху, затратой части поглощенного тепла на испарение воды.

Рис.15,в - черный резервуар. Жидкость заключена в емкости с черной матовой поверхностью, обычно располагаемой на крыше здания. Потери тепла на испарение отсутствуют, коэффициент поглощения черной поверхности близок к единице. Нагреватели этого типа достаточно недороги, просты в изготовлении и позволяют нагревать воду до температуры около 45 оС. Очень широкое распространение получили в Японии, Израиле. Параметры нагревателя ограничены тепловыми потерями с поверхности, особенно их увеличением в ветреную погоду.



Рис.15, г - черный резервуар с теплоизолированным дном. Потери тепла в предыдущей конструкции можно уменьшить почти в два раза, если теплоизолировать дно приемника. Для достижения этого достаточно всего нескольких сантиметров изолирующего слоя, в качестве которого можно использовать практически любой пористый материал с размером пор до 1 мм.

Рис.15, д - закрытые черные нагреватели. Для исключения теплоотдачи от приемника в воздух, особенно в ветреную погоду, емкость нагревателя помещается в контейнер с прозрачной для солнечного излучения крышкой. Лучшим материалом для крышек является стекло. Используются также специальные покрытия из пластика, имеющие подобные стеклу оптические свойства, но менее хрупкие.

Рис.15, е - металлические проточные нагреватели. В такой системе вода протекает по параллельным трубкам, закрепленным на зачерненной металлической пластине. Обычно диаметр трубок составляет около 2 см, расстояние между ними 20 см, толщина пластины 0,3 см. Пластину с трубками для защиты от ветра помещают в контейнер со стеклянной крышкой.

 

Подогреватели воздуха

Солнечное излучение можно использовать для подогрева воздуха, просушивания зерна, обогрева зданий. Частичная разгрузка энергетики, связанная с проектированием или перестройкой зданий для использования солнечного тепла, позволит сэкономить значительные количества топлива, затрачиваемого ежегодно на эти цели.



Поскольку теплопроводность воздуха намного ниже, чем воды, передача энергии от приемной поверхности к теплоносителю (воздуху) происходит намного слабее. Поэтому нагреватели такого типа чаще всего изготавливают с шероховатыми (для турбулизации потока) и имеющими большую площадь приемными поверхностями (для увеличения поверхности теплообмена).

На рис.18 изображены два типа воздушных нагревателей, во втором из которых используются пористые или сетчатые приемники излучения для увеличения контактной поверхности теплообмена.

Рис. 18. Воздушные нагреватели:

1 - стеклянное покрытие; 2 - шероховатая черная поглощающая поверхность; 3 - пористая поглощающая пластина; 4 - изоляция

Концентраторы солнечной энергии (солнечные коллекторы)

Многие возможные приложения требуют более высоких температур, чем те, которые можно получить даже с помощью лучших плоских нагревателей. Для решения этих задач используются концентрирующие коллекторы, принцип действия которых изображен на рис. 5.

Рис. 19. Параболический концентратор: 1 - зеркало; 2 – приемник

Концентрирующий коллектор включает в себя приемник, поглощающий излучение и преобразующий его в какой-либо другой вид энергии, и концентратор, который представляет собой оптическую систему, собирающую солнечное излучение с большой поверхности и направляющую его на приемник. Обычно концентратору обеспечивается постоянное вращение, обеспечивающее его ориентацию на Солнце. Чаще всего концентратор представляет собой зеркало параболической формы, в фокусе которого располагается приемник излучения.

В качестве концентраторов солнечной энергии могут также использоваться оптические линзы. В отличие от зеркал, концентрирующих отраженное излучение, линзы концентрируют проходящее через них излучение.

 

 

Принцип действия и классификация ВЭУ

Как уже было сказано, в ветроэнергетических установках энергия ветра преобразуется в механическую энергию их рабочих органов. Первичным и основным рабочим органом ВЭУ, непосредственно принимающим на себя энергию ветра и, как правило, преобразующим ее в кинетическую энергию своего вращения, является ветроколесо.

Вращение ветроколеса под действием ветра обуславливается тем, что в принципе на любое тело, обтекаемое потоком газа, действует сила F , которую можно разложить на две составляющие: 1 – вдоль скорости набегающего потока, называемую силой лобового сопротивления FC, и 2 – в направлении, перпендикулярном скорости набегающего потока, называемую подъемной силой FП ( рис.25).

Рис. 25. Силы, действующие на тело, обтекаемое потоком газа:

U– скорость газового потока; FC – сила лобового сопротивления;

FП – подъемная сила; F–результирующая сила

Величины этих сил зависят от формы тела, ориентации его в потоке газа и от скорости газа. Действием этих сил рабочий орган ветроустановки (ветроколесо) приводится во вращение.

Ветроустановки классифицируются по двум основным признакам: геометрии ветроколеса и его положению относительно направления ветра ( рис. 26, 27).

Рис. 26. Принципиальная схема ветроустановки, использующей силу лобового сопротивления и состоящей из укрепленных на перемещающемся ремне откидывающихся пластин

Если ось вращения ветроколеса параллельна воздушному потоку, то установка называется горизонтально-осевой, если перпендикулярна – вертикально-осевой.

Установки, использующие силу лобового сопротивления (драг-машины), как правило, вращаются с линейной скоростью, меньшей скорости ветра, а установки, использующие подъемную силу (лифт-машины), имеют линейную скорость концов лопастей, существенно большую скорости ветра.

Рис. 27. Классификация ветроколес (левый столбец – ветроколеса с горизонтальной осью, правый – с вертикальной)

Каждое ветроколесо характеризуется:

    • ометаемой площадью S, то есть площадью, покрываемой его лопастями при вращении и равной S=pD2/4, где D - диаметр ветроколеса;
    • геометрическим заполнением, равным отношению площади проекции лопастей на плоскость, перпендикулярную потоку, к ометаемой площади (так, например, при одинаковых лопастях четырехлопастное колесо имеет вдвое большее геометрическое заполнение, чем двухлопастное);
    • коэффициентом мощности CP, характеризующим эффективность использования ветроколесом энергии ветрового потока и зависящим от конструкции ветроколеса;
    • коэффициентом быстроходности Z, представляющим собой отношение скорости конца лопасти к скорости ветра.

При скорости ветра U и плотности воздуха r ветроколесо с ометаемой площадью S развивает мощность P:

P= CP SrU3/2.

Из этой формулы видно, что эта мощность пропорциональна кубу скорости ветра.

ВЭУ с большим геометрическим заполнением ветроколеса развивают значительную мощность при относительно слабом ветре, и максимум мощности достигается при небольших оборотах колеса. ВЭУ с малым заполнением достигают максимальной мощности при больших оборотах и дольше выходят на этот режим. Поэтому первые используются, например, в водяных насосах и даже при слабом ветре сохраняют работоспособность, а вторые – в качестве электрогенераторов, где требуется высокая частота вращения.

Ветрогенераторы с горизонтальной осью вращения могут использовать для преобразования энергии ветра подъемную силу или силу сопротивления. Устройства, использующие подъемную силу, предпочтительнее, поскольку они могут развить в несколько раз большую силу, чем устройства с непосредственным действием силы сопротивления. Последние, кроме того, не могут перемещаться со скоростью, превышающей скорость ветра. Вследствие этого лопасти, на которые действует подъемная сила (ветроколеса), могут быть более быстроходными (быстроходность - отношение окружной скорости элемента поверхности к скорости ветра) и иметь лучшее соотношение мощности и массы при меньшей стоимости единицы установленной мощности.

Ветроколесо может быть выполнено с различным количеством лопастей; от однолопастных ветрогенераторов с контргрузами до многолопастных (с числом лопастей до 50 и более). Ветроколеса с горизонтальной осью вращения выполняют иногда фиксированными по направлению, т.е. они не могут вращаться относительно вертикальной оси, перпендикулярной направлению ветра. Такой тип ветрогенераторов используется лишь при наличии одного, господствующего направления ветра. В большинстве же случаев система, на которой укреплено ветроколесо (так называемая головка), выполняется поворотной, ориентирующейся по направлению ветра. У малых ветрогенераторов как правило применяются для этой цели хвостовые оперения, у больших - ориентацией управляет электроника.

Для ограничения частоты вращения ветроколеса при большой скорости ветра используется ряд методов, в том числе установка лопастей во флюгерное положение, использование клапанов, установленных на лопастях или вращающихся вместе с ними, а также устройства для вывода ветроколеса из-под ветра с помощью бокового плана, расположенного параллельно плоскости вращения колеса.

Лопасти могут быть непосредственно закреплены на валу генератора, или же вращающий момент может передаваться от его обода через вторичный вал к генератору, или другой рабочей машине.

 

Перпендикулярное направление действия ветра на установки с горизонтальной осью вращения оказалось малоэффективным, так как также требует использования систем ориентации и сравнительно сложных методов съема мощности, что ведет к потере их эффективности. Они не имеют преимуществ по сравнению с другими типами ветродвигателей с горизонтальной и вертикальной осью вращения.

Ветрогенераторы с вертикальной осью вращения

Такие роторы имеют важные преимущества перед ветрогенераторами с горизонтальным расположением оси. Для них отпадает необходимость в устройствах для ориентации на ветер, упрощается конструкция и уменьшаются гироскопические нагрузки, вызывающие дополнительные напряжения в лопастях, системе передач и прочих элементах установок с горизонтальной осью вращения.

К таким установкам относятся устройства с пластинами, чашеобразными или турбинными элементами, а также роторами Савониуса с лопастями S-образной формы, на которые действует также и подъемная сила. Устройства такого типа обладают большим начальным моментом, однако меньшими быстроходностью и мощностью по сравнению с обычным ротором.

В 1920 г. во Франции Дарье предложил новый тип ротора, интенсивной разработкой которого начали заниматься с 1970 г. Сейчас ветрогенератор Дарье может рассматриваться в качестве основного конкурента ветрогенераторов крыльчатого типа.

Ротор Дарье относится к ветрогенераторам, использующим подъемную силу, которая появляется на выгнутых лопастях, имеющих в поперечном сечении профиль крыла. Ротор имеет сравнительно небольшой начальный момент, и большую быстроходность, в силу этого - относительно большую удельную мощность, отнесенную к его массе или стоимости. Такие роторы имеют различную форму (Φ-, Δ-, Υ- и ромб-образную) с одной, двумя или большим числом лопастей.

Крылья пропеллера должны быть легкими и в то же время достаточно прочными. Они делаются из дерева, стали или искусственных материалов - таких как фиберглас.

Современные ветрогенераторы конечно, более производительны чем ветряки. Количество вырабатываемого ими электричества зависит от силы ветра и площади лопастей пропеллеров. Например, увеличивая вдвое площадь лопастей, можно получить вчетверо больше электричества.

Малые и средние ветровые турбины как правило снабжают электричеством острова или небольшие отдаленные поселения.

Сегодня в США, Великобритании, Дании и Канаде производятся ветровые турбины мощностью 1 МВт электроэнергии (этого хватает, чтобы мгновенно вскипятить 500 чайников). Самые большие ветрогенераторы в мире - английская LS-1 на острове Оркни и американская MOD5-B на Гавайских островах. Лопасти английской турбины имеют размах 60 метров, она производит приблизительно 3 МВт электроэнергии. Американская еще больше: размах лопастей 96 метров.

Скорее, будущее принадлежит средним турбинам, более удобным в производстве и эксплуатации. Как бы ни были велики и мощны современные ветрогенераторы, они пока не могут полностью обеспечить потребности крупных городов. Небольшие ветровые электростанции успешно действуют во многих странах мира. В США, например, где множество ферм и малых городов расположено в труднодоступной местности, всячески поощряется строительство ветрогенератор в 1,5 киловатта. На одном из Северо-Фризских островов в Германии уже много лет работает установка для опреснения морской воды, а на острове Пельворм даже создан полигон для испытаний разных моделей ветроустановок. В нашей стране ветрогенераторы малой мощности успешно применяются в южных животноводческих хозяйствах для механизации подъема воды. Практика показала, что использование их обходится в 4 раза дешевле, чем использование дизельных двигателей, и в 10 раз дешевле подвоза воды автомобилями.

Непостоянство силы ветра требует надежной аккумуляции (сохранения) энергии на периоды затишья. Однако существующие аккумуляторы электроэнергии очень дороги и могут работать с хорошей отдачей лишь с малыми ветрогенераторами. Вследствие этого энергию ветра лучше аккумулировать в самом продукте, который она производит, - в смолотой муке, измельченных кормах, воде, наполнившей водонапорную башню. Все это повышает ценность применения ветровой энергии именно в сельском хозяйстве.

Одно из достоинств ветроустановок заключается в том, что они действуют как бы в унисон с нашими потребностями. В большинстве регионов земного шара наиболее сильные ветра дуют осенью и в начале зимы - как роз тогда, когда человек больше всего нуждается в свете и тепле. И наоборот, времена затишья - в основном летом - совпадают с периодами сокращения потребления энергии (мы говорим, разумеется, о бытовом потреблении). Но это и другие достоинство выглядят бледновато по сравнению с основным недостатком: чтобы увеличить мощность ветроустановки, надо наращивать размер лопастей, то есть, утяжелять конструкцию. Однако тогда для работы ветрогенератора потребуется еще большая скорость ветра, а значит, сузятся районы применения установки. Заколдованный круг.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.