Сделай Сам Свою Работу на 5

Гистогенетическая классификация





Костная ткань состоит из клеток и межклеточного вещества, которые характеризуются определенной гистоархитектоникой. Основные клетки костной ткани — это остеобласты, остеоциты и остеокласты. Функции костной ткани: опорная, защитная, резервуарно-депонирующая, защита внутренней среды, кроветворения, ловушки, метаболическая(рост костной ткани, регуляция роста костей, сепаративная регенерация костной ткани, минерализация кости.

НАДКОСТНИЦА (periosteum, периост), фиброзная оболочка желтовато-белого или же розового цвета, покрывающая почти всюду наружную поверхность костей и содействующая соединению их с окружающими мягкими тканями.Строение Наружная поверхность кости, кроме суставных поверхностей и мест прикрепления сухожилий мышц и связок, покрыта надкостницей (periosteum), которая представляет тонкую (100—200 мкм) соединительнотканную пластинку. Надкостница прочно крепится к кости благодаря наличию соединительнотканных волокон, перпендикулярно проникающих в компактное вещество кости. Надкостница состоит из двух слоев: наружного — адвентициального и внутреннего — волокнистого. В адвентиции надкостницы имеется много коллагеновых волокон, среди которых располагаются нервы, сплетения мелких артерий, вен и лимфатических сосудов. Кровеносные сосуды придают надкостнице розовый оттенок. Волокнистый слой надкостницы прилежит к кости и содержит остеобласты, которые при росте кости в толщину образуют общие (генеральные) наружные пластинки промежуточного вещества. После 25 лет остеогенная функция костных клеток угасает, но легко активизируется при переломах и повреждениях костей.



84)Грубоволокнистая костная ткань в основном образует кости эмбриона. После рождения она остается только в швах черепа и в швах тазовых костей, а также в бугорках костей.Пластинчатая костная ткань составляет основную массу костной ткани и из нее образованы все кости после рождения. Она образована костными пластинками. ОСТЕОН (от греч. osteon - кость) (гаверсова система) - структурная единица компактного вещества костей у позвоночных животных и человека. Остеон состоит из костных пластинок, расположенных концентрически вокруг гаверсовых каналов, что придает кости исключительную прочность.



85) Развитие кости на месте хряща, т.е. непрямой остеогенез, начинается в области диафиза

Образование костной ткани из мезенхимы:

Первая стадия — образование скелетогенного островка. В местах развития будущей кости происходят очаговое размножение мезенхимных клеток и васкуляризация скелетогенного островка.

Вторая стадия – остеоидная. Во второй стадии происходит дифференцировка клеток островков, образуется органическая матрица костной ткани, или остеоид, – оксифильное межклеточное вещество с коллагеновыми фибриллами. Разрастающиеся волокна раздвигают клетки, которые, не теряя своих отростков, остаются связанными друг с другом. В основном веществе появляются мукопротеиды (оссеомукоид), цементирующие волокна в одну прочную массу.

Некоторые клетки, дифференцирующиеся в остеоциты, уже в этой стадии могут оказаться включенными в толщу волокнистой массы. Другие, располагающиеся по поверхности, дифференцируются в остеобласты. В течение некоторого времени остеобласты располагаются по одну сторону волокнистой массы, но вскоре коллагеновые волокна появляются и с других сторон, отделяя остеобласты друг от друга. Постепенно эти клетки оказываются «замурованными» в межклеточном веществе, теряют способность размножаться и превращаются в остеоциты. В то же время из окружающей мезенхимы образуются новые генерации остеобластов, которые наращивают кость снаружи. Т.е. обеспечивают аппозиционный рост костной ткани.

Третья стадия (прямого остегенеза) — обызвествление, или кальцификация, межклеточного вещества.



Классификации мышечной ткани

Морфологическая классификация

1. Поперечно-полосатая (поперечно-исчерченная)

2. Гладкая (неисчерченная)

Классификация по локализации

1. Скелетная

2. Внутренностная

3. Сердечная

Гистогенетическая классификация

  • Гладкие мышечные ткани
    • Висцерального типа
    • Мионейрального типа
    • Миоэпителиального типа (часть морфологов не выделяют данный вид мышечных тканей, считая миоэпителиальные клетки специфическими клетками эпителия – миоидными клетками эпителия)
  • Поперечно-полосатая мышечная ткань соматического типа
  • Поперечно-полосатая мышечная ткань целомического типа

87) Миофибриллы – это сократительные элементы мышечного волокна, количество которых может достигать нескольких тысяч. Состоят из актиновых (тонких) и миозиновых (толстых) микрофибриллЕдиницей строения и функционирования миофибрилл является саркомер — участок между двумя Z-дисками.

88) Гладкая мускулатура - одна из тканей, входящих в состав стенок различных полых органов и отвечающая за их способность к сокращению. 1 Мышечные ткани (гладкая мускулатура). Строение и функция. Свойства гладкой мускулатуры

Гладкая мускулатура – одна из тканей, входящих в состав стенок различных полых органов и отвечающая за их способность к сокращению. Она необходима для движения крови по сосудам, перистальтики кишечника, удаления мочи из мочевого пузыря.

Гладкая мышечная ткань образует гладкую мускулатуру, которая входит в состав некоторых внутренних органов, а поперечнополосатая образует скелетные мышцы. [1]

Электрическая активность. Висцеральные гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения — тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении — расслабляется. В периоды состояния относительного покоя величина мембранного потенциала в среднем равна — 50 мВ. В клетках висцеральных гладких мышц наблюдаются медленные волнообразные флюктуации мембранного потенциала величиной в несколько милливольт, а также ПД. Величина ПД может варьировать в широких пределах. В гладких мышцах продолжительность ПД 50—250 мс; встречаются ПД различной формы. В некоторых гладких мышцах, например мочеточника, желудка, лимфатических сосудов, ПД имеют продолжительное плато во время реполяризации, напоминающее плато потенциала в клетках миокарда.

Платообразные ПД обеспечивают поступление в цитоплазму миоцитов значительного количества внеклеточного кальция, участвующего в последующем в активации сократительных белков гладкомышечных клеток. Ионная природа ПД гладкой мышцы опреде ляется особенностями каналов мембраны гладкой мышечной клетки. Автоматия. ПД гладких мышечных клеток имеют авторитмический (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в различных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.[2]

Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов.

Пластичность. Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без зако номерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормально му функционированию внутренних полых органов.

Связь возбуждения с сокращением. Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцию.[3]

В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина. Механизм фосфорилирования миозина гладкой мышцы осуществляется следующим образом: ион Са2+ со единяется с кальмодулином (кальмодулин — рецептивный белок для иона Са2+). Возникающий комплекс активирует фермент — киназу легкой цепи миозина, который в свою очередь катализирует процесс фосфорилирования миозина.

Химическая чувствительность. Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину, АХ, гистамину и др.

 

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.