Сделай Сам Свою Работу на 5

Альтернативные формы двойной спирали ДНК





Все, о чем мы говорили, касалось наиболее распространенной, так называемой В-формы двойной спирали ДНК. Известны также два других изомерных типа двойной спирали. Они образуются благодаря тому, что валентные углы между основаниями и сахаром могут меняться, а дезоксирибозное кольцо и сахарофосфатный остов достаточно гибки, чтобы могли сформироваться альтернативные конфигурации. Редко встречающаяся А-форма, существующая только при пониженной влажности, отличается от В-формы тем, что плоскости оснований составляют с перпендикуляром к оси спирали угол 20° :


Пространственные модели В-, А- и Z-ДНК (каждая из моделей содержит 20 пар оснований).
Атомы фосфора и связанные с ними атомы кислорода изображены в виде темных шариков, атомы азота – в виде слегка затененных шариков.
Сплошная линия, соединяющая фосфатные группы, показывает ход полинуклеотидной спирали.
Обратите внимание на зигзагообразную форму остова Z-ДНК. А-ДНК короче и толще, а Z-ДНК чуть длиннее и тоньше, чем В-ДНК.
В А-ДНК большой желобок более глубокий, но зато малый уплощен и напоминает обвитую по поверхности ленту.
У Z-ДНК желобок только один, он чуть глубже, чем большой желобок у В-ДНК, но не такой глубокий, как у А-ДНК.



Поэтому расстояние между парами оснований по вертикали уменьшается до 0,29 нм, а число пар на виток увеличивается до 11—12. Какова биологическая функция А-формы ДНК—пока неясно.

Характерной особенностью В-формы ДНК является то, что сахарофосфатные остовы обеих цепей образуют правую спираль. Однако при определенных условиях участки ДНК, для которых характерно чередование пуриновых и пиримидиновых нуклеотидов, принимают форму левой спирали. При этом расстояние между соседними парами оснований увеличивается до 0,77 нм, а число пар на один виток—до 12. Остов молекулы ДНК имеет зигзагообразный вид, поэтому подобная форма получила название Z-ДНК. Вопрос о том, существует ли Z-ДНК в естественных условиях и образуется ли она в определенных участках В-спирали под действием специфических белков, способных переводить В-форму в Z-форму, сейчас интенсивно исследуется.

 

Размер молекул ДНК

Обычно размер молекулы ДНК выражается в числе пар нуклеотидов, при этом за единицу берется тысяча пар нуклеотидов (т.п.н.). Мол. масса одной т.п.н. В-ДНК равна в среднем 6,6*105, а ее длина составляет 340 нм. Если принять все необходимые меры, чтобы не разрушить ДНК при выделении, и использовать мягкие методы измерения длины, то обнаружится удивительное соответствие между длиной молекулы ДНК и массой одной небольшой хромосомы.
Так, молекулы ДНК единственных хромосом, из которых состоят геномы бактериофагов λ и Т4, а также адено- и герпесвирусов, имеют длину, соответствующую числу пар оснований в одной хромосоме, составляющей геном каждого из этих вирусов. Полный геном E.coli (~ 4*106 п.н.) также представлен единственной молекулой ДНК и имеет длину 1,4 мм. Есть все основания считать, что каждая из хромосом дрожжей, Drosophila и даже человека состоит из одной молекулы ДНК размером от нескольких десятков тысяч до многих миллионов пар нуклеотидов.



Разнообразие форм ДНК

Существовавшее до недавнего времени мнение о том, что В-ДНК — это совершенная двойная спираль, геометрия которой одинакова независимо от нуклеотидной последовательности, в действительности не совсем корректно. Детальный рентгеноструктурный анализ, построение моделей и термодинамические расчеты показали, что плоскости соседних пар оснований не строго параллельны. Каждая комплементарная пара оснований является как бы клином, отклоняющим ось спирали в одном или в другом направлении. Наибольший «крен» наблюдается тогда, когда два соседних аденина в одной цепи спарены с двумя тиминами другой. В этом месте происходит локальное искривление спирали. Если такие пары встречаются с периодичностью примерно один раз на 10 пар (т.е. один раз на каждый виток спирали), то молекула ДНК приобретает заметно искривленную форму. Изгибы в молекуле ДНК наблюдаются в тех участках последовательности, где с необычно высокой частотой встречаются повторы (А•Т)5–6, разделенные GC-богатыми участками из четырех-шести нуклеотидов. Биологическая роль искривления ДНК окончательно не установлена. Предрасположенность к такому изгибанию, зависящая от последовательности оснований, может иметь значение при наматывании молекулы ДНК на гистоновые октамеры в хроматине. Возможно, изгибание ДНК существенно и при специфическом связывании ДНК с белками в процессе регуляции экспрессии генов.



 

 

ДНК может находиться в линейной или кольцевой форме:

 


Схематическое представление и электронные микрофотографии линейной (А) и кольцевой (Б) двухцепочечной ДНК фага λ

 

Бактериальные плазмиды, хромосомы некоторых бактерий, большинство митохондриальных и хлоропластных ДНК, геномы вирусов млекопитающих представлены единственной ковалентно замкнутой кольцевой дуплексной молекулой ДНК. Хромосома бактериофага λ на разных стадиях жизненного цикла существует то как линейная молекула, то как замкнутая кольцевая структура, то как кольцо с разрывами. По-видимому, никакого верхнего предела для размера кольцевой двухцепочечной молекулы ДНК не существует.

ДНК в клетке обычно находится в комплексе с белками. Связанный белок слегка раскручивает спираль ДНК, соответственно и число витков спирали на единицу длины становится меньше, чем у свободной В-ДНК. При удалении белка восстанавливается обычное число правозакрученных (положительных) витков спирали. В линейной молекуле ДНК это происходит достаточно легко, поскольку обе цепи свободно вращаются одна вокруг другой. В замкнутой же кольцевой молекуле общее число витков спирали топологически фиксировано, и число оборотов одной цепи вокруг другой не может быть изменено без компенсаторного образования витков противоположного знака где-нибудь в другом месте молекулы. Итак, когда естественные кольцевые дуплексы освобождаются от белков, с которыми они часто бывают связаны in vivo, происходит следующее:

1) число правозакрученных (положительных) витков спрали возрастает до величины, характерной для В-ДНК;
2) в самом дуплексе образуется столько же витков противоположного знака, чтобы компенсировать увеличение скрученности спирали.

О таких молекулах говорят, что они обладают отрицательной сверхспиральностью:

 


А. Схематическое изображение сверхспиральной кольцевой ДНК и релаксированных кольцевых форм, полученных либо в результате разрыва одной из двух цепей,
либо в результате локального расхождения двух цепей
Б. Двухцепочечная кольцевая ДНК фага М13 с разной степенью сверхспиральности. Цифрами обозначено число сверхвитков в каждой молекуле.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.