Сделай Сам Свою Работу на 5

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ





 

Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.

 

Двойные интегралы.

 

Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой

f(x, y) = 0.

 

y

 

0 x

 

 

Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью D. Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область D.

С геометрической точки зрения D - площадь фигуры, ограниченной контуром.

 

Разобьем область D на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние Dхi, а по оси у – на Dуi. Вообще говоря, такой порядок разбиения наобязателен, возможно разбиение области на частичные участки произвольной формы и размера.

 

Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны Si = Dxi × Dyi .

 

В каждой частичной области возьмем произвольную точку Р(хi, yi) и составим интегральную сумму



где f – функция непрерывная и однозначная для всех точек области D.

Если бесконечно увеличивать количество частичных областей Di, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.

 

Определение: Если при стремлении к нулю шага разбиения области D интегральные суммы имеют конечный предел, то этот предел называется двойным интеграломот функции f(x, y) по области D.

 

С учетом того, что Si = Dxi × Dyi получаем:

 

 

В приведенной выше записи имеются два знака S, т.к. суммирование производится по двум переменным х и у.

Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:

 

 

Условия существования двойного интеграла.

 

Сформулируем достаточные условия существования двойного интеграла.

 

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, то двойной интеграл существует.

 

 

Теорема. Если функция f(x, y) ограничена в замкнутой области D и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.



 

Свойства двойного интеграла.

 

 

1)

 

2)

 

3) Если D = D1 + D2, то

 

4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.

 

 

5) Если f(x, y) ³ 0 в области D, то .

 

6) Если f1(x, y) £ f2(x, y), то .

 

7) .

Вычисление двойного интеграла.

 

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями х = a, x = b, (a < b), y = j(x), y = y(x), где j и y - непрерывные функции и

j £ y, тогда

 

 

y y = y(x)

 
 

 


D

 

y = j(x)

 

a b x

 

 

Пример. Вычислить интеграл , если область D ограничена линиями: y = 0, y = x2, x = 2.

y

 

D

 

0 2 x

 

 

=

=

 

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями y = c, y = d (c < d), x = F(y), x = Y(y) (F(y) £ Y(y)), то

 

Пример. Вычислить интеграл , если область D ограничена линиями y = x, x = 0, y = 1, y = 2.

y

 
 


y = x

D

 

0 x

 

 

 

Пример. Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2.

 

=

=

 

 

Пример. Вычислить двойной интеграл , если область интегрирования ограничена линиями ху=1, у = , х = 2.

 

 

1.

 

2.

 

 

 

 

3.

 

Замена переменных в двойном интеграле.

Расмотрим двойной интеграл вида , где переменная х изменяется в пределах от a до b, а переменная у – от j1(x) до j2(х).



Положим х = f(u, v); y = j(u, v)

 

Тогда dx = ; dy = ;

 

 

 

т.к. при первом интегрировании переменная х принимается за постоянную, то dx = 0.

 

, т.е.

пожставляя это выражение в записанное выше соотношение для dy, получаем:

 

Выражение называется определителем Якобиили Якобианомфункций f(u, v) и j(u, v).

 

(Якоби Карл Густав Якоб – (1804-1851) – немецкий математик)

 

Тогда

Т.к. при первом интегрировании приведенное выше выражение для dx принимает вид ( при первом интегрировании полагаем v = const, dv = 0), то при изменении порядка интегрирования, получаем соотношение:

 

Двойной интеграл в полярных координатах.

Воспользуемся формулой замены переменных:

При этом известно, что

В этом случае Якобиан имеет вид:

 

 

 

Тогда

Здесь t - новая область значений,

 

Тройной интеграл.

 

При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет.

Единственное отличие заключается в том, что при нахождении тройного интеграла интегрирование ведется не по двум, а по трем переменным, а областью интегрирования является не часть плоскости, а некоторая область в техмерном пространстве.

 

 

 

Суммирование производится по области v, которая ограничена некоторой поверхностью j(x, y, z) = 0.

 

 

Здесь х1 и х2 – постоянные величины, у1 и у2 – могут быть некоторыми функциями от х или постоянными величинами, z1 и z2 – могут быть функциями от х и у или постоянными величинами.

 

 

Пример. Вычислить интеграл

 

Замена переменных в тройном интеграле.

 

Операция замены переменных в тройном интеграле аналогична соответсвующей операции для двойного интеграла.

Можно записать:

 

 

Наиболее часто к замене переменной в тройном интеграле прибегают с целью перейти от декартовой прямоугольной системы координат к цилиндрической или сферической системе.

 

Цилиндрическая система координат.

 

z

 

 

P

 

z

 

q x

r

 

 

y

Связь координат произвольной точки Р пространства в цилиндрической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:

 

;

Для представления тройного интеграла в цилиндрических координатах вычисляем Якобиан:

Итого:

Сферическая система координат.

z

 

 

P

 

r

j

 

0 q x

 

y

Связь координат произвольной точки Р пространства в сферической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:

 

Для представления тройного интеграла в сферических координатах вычисляем Якобиан:

Окончательно получаем:

 

Геометрические и физические приложения кратных интегралов.

1) Вычисление площадей в декартовых координатах.

 

y

y = j(x)

 

 

S

 

 

y = f(x)

a b x

 

Площадь S, показанная на рисунке может быть вычислена с помощью двойного интеграла по формуле:

 

Пример. Вычислить площадь фигуры, ограниченной линиями y2 = 4x + 4;

x + y – 2 = 0.

Построим графики заданных функций:

 

 

Линии пересекаются в двух точках – (0, 2) и (8, -6). Таким образом, область интегрирования ограничена по оси Ох графиками кривых от до х = 2 – у, а по оси Оу – от –6 до 2. Тогда искомая площадь равна:

S =

 

 

2) Вычисление площадей в полярных координатах.

 

 

 

3) Вычисление объемов тел.

 

 

Пусть тело ограничено снизу плосткостью ху, а сверху– поверхностью z = f(x,y),

а с боков – цилиндрической поверхностью.

 

Такое тело называется цилиндроид.

 

 

z

 

z = f(x, y)

 

x1 y1 x2

 

x

y2

 

 

y

 

V =

 

 

Пример. Вычислить объем, ограниченный поверхностями: x2 + y2 = 1;

x + y + z =3 и плоскостью ХОY.

 

Пределы интегрирования: по оси ОХ:

по оси ОY: x1 = -1; x2 = 1;

 

 

4) Вычисление площади кривой поверхности.

 

Если поверхность задана уравнением: f(x, y, z) = 0, то площадь ее поверхности находится по формуле:

 

Если поверхность задана в неявном виде, т.е. уравнением z = j(x, y), то площадь этой поверхности вычисляется по формуле:

 

 

 

5)Вычисление моментов инерции площадей плоских фигур.

 

Пусть площадь плоской фигуры (область D) ограничена линией, уравнение которой f(x,y) = 0. Тогда моменты инерции этой фигуры находятся по формулам:

 

- относительно оси Ох:

- относительно оси Оу:

- относительно начала координат: - этот момент инерции называют еще полярным моментом инерции.

 

 

6) Вычисление центров тяжести площадей плоских фигур.

 

Координаты центра тяжести находятся по формулам:

 

здесь w – поверхностная плотность (dm = wdydx –масса элемента площади).

 

7) Вычисление объемов тел с помощью тройного интеграла.

 

Если поверхность тела описывается уравнением f(x, y, z) = 0, то объем тела может быть найден по формуле:

при этом z1 и z2 – функции от х и у или постоянные, у1 и у2 – функции от х или постоянные, х1 и х2 – постоянные.

 

 

8) Координаты центра тяжести тела.

 

 

9) Моменты инерции тела относительно осей координат.

 

 

10) Моменты инерции тела относительно координатных плоскостей.

 

 

11) Момент инерции тела относительно начала координат.

 

 

В приведенных выше формулах п.п. 8 – 11 r – область вычисления интеграла по объему, w – плотность тела в точке (х, у, z), dv – элемент объема

- в декартовых координатах: dv = dxdydz;

- в циллиндрических координатах: dv = rdzdjdq;

- в сферических координатах: dv = r2sinjdrdjdq.

 

 

12) Вычисление массы неоднородного тела.

 

Теперь плотность w – величина переменная.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.