способ. Метод неопределенных коэффициентов.
Рассмотрим интегралы следующих трех типов:
где P(x) – многочлен, n – натуральное число.
Причем интегралы II и III типов могут быть легко приведены к виду интеграла I типа.
Далее делается следующее преобразование:
в этом выражении Q(x)- некоторый многочлен, степень которого ниже степени многочлена P(x), а l - некоторая постоянная величина.
Для нахождения неопределенных коэффициентов многочлена Q(x), степень которого ниже степени многочлена P(x), дифференцируют обе части полученного выражения, затем умножают на и, сравнивая коэффициенты при одинаковых степенях х, определяют l и коэффициенты многочлена Q(x).
Данный метод выгодно применять, если степень многочлена Р(х) больше единицы. В противном случае можно успешно использовать методы интегрирования рациональных дробей, рассмотренные выше, т.к. линейная функция является производной подкоренного выражения.
Пример.
.
Теперь продифференцируем полученное выражение, умножим на и сгруппируем коэффициенты при одинаковых степенях х.
=
=
Итого =
=
Пример.
Пример.
Второй способ решения того же самого примера.
С учетом того, что функции arcsin и arccos связаны соотношением , а постоянная интегрирования С – произвольное число, ответы, полученные различными методами, совпадают.
Как видно, при интегрировании иррациональных функций возможно применять различные рассмотренные выше приемы. Выбор метода интегрирования обуславливается в основном наибольшим удобством, очевидностью применения того или иного метода, а также сложностью вычислений и преобразований.
Пример.
Несколько примеров интегралов, не выражающихся через
элементарные функции.
К таким интегралам относится интеграл вида , где Р(х)- многочлен степени выше второй. Эти интегралы называются эллиптическими.
Если степень многочлена Р(х) выше четвертой, то интеграл называется ультраэллиптическим.
Если все – таки интеграл такого вида выражается через элементарные функции, то он называется псевдоэллиптическим.
Не могут быть выражены через элементарные функции следующие интегралы:
1) - интеграл Пуассона ( Симеон Дени Пуассон – французский математик (1781-1840))
2) - интегралы Френеля (Жан Огюстен Френель – французский ученый (1788-1827) - теория волновой оптики и др.)
3) - интегральный логарифм
4) - приводится к интегральному логарифму
5) - интегральный синус
6) - интегральный косинус
Определенный интеграл.
Пусть на отрезке [a, b] задана непрерывная функция f(x).
y
M
m
0 a xi b x
Обозначим m и M наименьшее и наибольшее значение функции на отрезке [a, b]
Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками.
x0 < x1 < x2 < … < xn
Тогда x1 – x0 = Dx1, x2 – x1 = Dx2, … ,xn – xn-1 = Dxn;
На каждом из полученных отрезков найдем наименьшее и наибольшее значение функции.
[x0, x1] ® m1, M1; [x1, x2] ® m2, M2; … [xn-1, xn] ® mn, Mn.
Составим суммы:
n = m1Dx1 + m2Dx2 + … +mnDxn =
n = M1Dx1 + M2Dx2 + … + MnDxn =
Сумма называется нижней интегральной суммой, а сумма – верхней интегральной суммой.
Т.к. mi £ Mi, то n £ n, а m(b – a) £ n £ n £ M(b – a)
Внутри каждого отрезка выберем некоторую точку e.
x0 < e1 < x1, x1 < e < x2, … , xn-1 < e < xn.
Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b].
Sn = f(e1)Dx1 + f(e2)Dx2 + … + f(en)Dxn =
Тогда можно записать: miDxi £ f(ei)Dxi £ MiDxi
Следовательно,
Геометрически это представляется следующим образом: график функции f(x) ограничен сверху описанной ломаной линией, а снизу – вписанной ломаной.
Обозначим maxDxi – наибольший отрезок разбиения, а minDxi – наименьший. Если maxDxi® 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности.
Если , то
Определение: Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].
Обозначение :
а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования.
Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b].
Также верны утверждения:
Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.
Свойства определенного интеграла.
1)
2)
3)
4) Если f(x) £ j(x) на отрезке [a, b] a < b, то
5) Если m и M – соответственно наименьшее и наибольшее значения функции f(x) на отрезке [a, b], то:
6) Теорема о среднем. Если функция f(x) непрерывна на отрезке [a, b], то на этом отрезке существует точка e такая, что
Доказательство: В соответствии со свойством 5:
т.к. функция f(x) непрерывна на отрезке [a, b], то она принимает на этом отрезке все значения от m до М. Другими словами, существует такое число eÎ [a, b], что если
и m = f(e), а a £ e £ b, тогда . Теорема доказана.
7) Для произвольных чисел a, b, c справедливо равенство:
Разумеется, это равенство выполняется, если существует каждый из входящих в него интегралов.
8)
Обобщенная теорема о среднем. Если функции f(x) и j(x) непрерывны на отрезке [a, b], и функция j(х) знакопостоянна на нем, то на этом отрезке существует точка e, такая, что
Вычисление определенного интеграла.
Пусть в интеграле нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла.
Обозначим = Ф(х). Найдем производную функции Ф(х) по переменному верхнему пределу х.
Аналогичную теорему можно доказать для случая переменного нижнего предела.
Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.
Теорема: (Теорема Ньютона – Лейбница)
Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то
это выражение известно под названием формулы Ньютона – Лейбница.
Доказательство: Пусть F(x) – первообразная функции f(x). Тогда в соответствии с приведенной выше теоремой, функция - первообразная функция от f(x). Но т.к. функция может иметь бесконечно много первообразных, которые будут отличаться друг от друга только на какое – то постоянное число С, то
при соответствующем выборе С это равенство справедливо для любого х, т.е. при х = а:
Тогда .
А при х = b:
Заменив переменную t на переменную х, получаем формулу Ньютона – Лейбница:
Теорема доказана.
Иногда применяют обозначение F(b) – F(a) = F(x) .
Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.
Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов.
Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.
Замена переменных.
Пусть задан интеграл , где f(x) – непрерывная функция на отрезке [a, b].
Введем новую переменную в соответствии с формулой x = j(t).
Тогда если
1) j(a) = а, j(b) = b
2) j(t) и j¢(t) непрерывны на отрезке [a, b]
3) f(j(t)) определена на отрезке [a, b], то
Тогда
Пример.
При замене переменной в определенном интеграле следует помнить о том, что вводимая функция (в рассмотренном примере это функция sin) должна быть непрерывна на отрезке интегрирования. В противном случае формальное применение формулы приводит к абсурду.
Пример.
, с другой стороны, если применить тригонометрическую подстановку,
Т.е. два способа нахождения интеграла дают различные результаты. Это произошло из-за того, что не был учтен тот факт, что введенная переменная tgx имеет на отрезке интегрирования разрыв (в точке х = p/2). Поэтому в данном случае такая подстановка неприменима. При замене переменной в определенном интеграле следует внимательно следить за выполнением перечисленных выше условий.
Интегрирование по частям.
Если функции u = j(x) и v = y(x) непрерывны на отрезке [a, b], а также непрерывны на этом отрезке их производные, то справедлива формула интегрирования по частям:
Вывод этой формулы абсолютно аналогичен выводу формулы интегрирования по частям для неопределенного интеграла, который был весьма подробно рассмотрен выше, поэтому здесь приводить его нет смысла.
Несобственные интегралы.
Пусть функция f(x) определена и непрерывна на интервале [a, ¥). Тогда она непрерывна на любом отрезке [a, b].
Определение: Если существует конечный предел , то этот предел называется несобственным интегралом от функции f(x) на интервале [a, ¥).
Обозначение:
Если этот предел существуетиконечен, то говорят, что несобственный интеграл сходится.
Если предел не существует или бесконечен, то несобственный интеграл расходится.
Аналогичные рассуждения можно привести для несобственных интегралов вида:
Конечно, эти утверждения справедливы, если входящие в них интегралы существуют.
Пример.
- не существует.
Несобственный интеграл расходится.
Пример.
- интеграл сходится
Теорема: Если для всех х (x ³ a) выполняется условие и интеграл сходится, то тоже сходится и ³ .
Теорема: Если для всех х (x ³ a) выполняется условие и интеграл расходится, то тоже расходится.
Теорема: Если сходится, то сходится и интеграл .
В этом случае интеграл называется абсолютно сходящимся.
Интеграл от разрывной функции.
Если в точке х = с функция либо неопределена, либо разрывна, то
Если интеграл существует, то интеграл - сходится, если интеграл не существует, то - расходится.
Если в точке х = а функция терпит разрыв, то .
Если функция f(x) имеет разрыв в точке b на промежутке [a, с], то
Таких точек внутри отрезка может быть несколько.
Если сходятся все интегралы, входящие в сумму, то сходится и суммарный интеграл.
Геометрические приложения определенного интеграла.
Вычисление площадей плоских фигур.
у
+ +
0 a - b x
Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.
Для нахождения суммарной площади используется формула .
Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.
Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2.
Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:
(ед2)
Нахождение площади криволинейного сектора.
r = f(j)
b
a
О r
Для нахождения площади криволинейного сектора введем полярную систему координат. Уравнение кривой, ограничивающей сектор в этой системе координат, имеет вид r = f(j), где r - длина радиус – вектора, соединяющего полюс с произвольной точкой кривой, а j - угол наклона этого радиус – вектора к полярной оси.
Площадь криволинейного сектора может быть найдена по формуле
Вычисление длины дуги кривой.
y y = f(x)
DSi Dyi
Dxi
a b x
Длина ломаной линии, которая соответствует дуге, может быть найдена как .
Тогда длина дуги равна .
Из геометрических соображений:
В то же время
Тогда можно показать, что
Т.е.
Если уравнение кривой задано параметрически, то с учетом правил вычисления производной параметрически заданной функции, получаем
,
где х = j(t) и у = y(t).
Если задана пространственная кривая, и х = j(t), у = y(t) и z = Z(t), то
Если кривая задана в полярных координатах, то
, r = f(j).
Пример: Найти длину окружности, заданной уравнением x2 + y2 = r2.
1 способ.Выразим из уравнения переменную у.
Найдем производную
Тогда
Тогда S = 2pr. Получили общеизвестную формулу длины окружности.
2 способ. Если представить заданное уравнение в полярной системе координат, то получим: r2cos2j + r2sin2j = r2, т.е. функция r = f(j) = r, тогда
Вычисление объемов тел.
Вычисление объема тела по известным площадям его параллельных сечений.
Q(xi-1)
Q(xi)
a xi-1 xi b x
Пусть имеется тело объема V. Площадь любого поперечного сечения тела Q, известна как непрерывная функция Q = Q(x). Разобьем тело на “слои” поперечными сечениями, проходящими через точки хi разбиения отрезка [a, b]. Т.к. на каком- либо промежуточном отрезке разбиения [xi-1, xi] функция Q(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно Mi и mi.
Если на этих наибольшем и наименьшем сечениях построить цилиндры с образующими, параллельными оси х, то объемы этих цилиндров будут соответственно равны MiDxi и miDxi здесь Dxi = xi - xi-1.
Произведя такие построения для всех отрезков разбиения, получим цилиндры, объемы которых равны соответственно и .
При стремлении к нулю шага разбиения l, эти суммы имеют общий предел:
Таким образом, объем тела может быть найден по формуле:
Недостатком этой формулы является то, что для нахождения объема необходимо знать функцию Q(x), что весьма проблематично для сложных тел.
Пример: Найти объем шара радиуса R.
y
R y
-R 0 x R x
В поперечных сечениях шара получаются окружности переменного радиуса у. В зависимости от текущей координаты х этот радиус выражается по формуле .
Тогда функция площадей сечений имеет вид: Q(x) = .
Получаем объем шара:
.
Пример: Найти объем произвольной пирамиды с высотой Н и площадью основания S.
Q S
x H x
При пересечении пирамиды плоскостями, перпендикулярными высоте, в сечении получаем фигуры, подобные основанию. Коэффициент подобия этих фигур равен отношению x/H, где х – расстояние от плоскости сечения до вершины пирамиды.
Из геометрии известно, что отношение площадей подобных фигур равно коэффициенту подобия в квадрате, т.е.
Отсюда получаем функцию площадей сечений:
Находим объем пирамиды:
Объем тел вращения.
Рассмотрим кривую, заданную уравнением y = f(x). Предположим, что функция f(x) непрерывна на отрезке [a, b]. Если соответствующую ей криволинейную трапецию с основаниями а и b вращать вокруг оси Ох, то получим так называемое тело вращения.
y = f(x)
x
Т.к. каждое сечение тела плоскостью x = const представляет собой круг радиуса , то объем тела вращения может быть легко найден по полученной выше формуле:
Площадь поверхности тела вращения.
Мi B
А
х
xi
Определение: Площадью поверхности вращения кривой АВ вокруг данной оси называют предел, к которому стремятся площади поверхностей вращения ломаных, вписанных в кривую АВ, при стремлении к нулю наибольших из длин звеньев этих ломаных.
Разобьем дугу АВ на n частей точками M0, M1, M2, … , Mn. Координаты вершин полученной ломаной имеют координаты xi и yi. При вращении ломаной вокруг оси получим поверхность, состоящую из боковых поверхностей усеченных конусов, площадь которых равна DPi. Эта площадь может быть найдена по формуле:
Здесь DSi – длина каждой хорды.
Применяем теорему Лагранжа к отношению .
Получаем:
Тогда
Площадь поверхности, описанной ломаной равна:
Эта сумма не является интегральной, но можно показать, что
Тогда - формула вычисления площади поверхности тела вращения.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2025 stydopedia.ru Все материалы защищены законодательством РФ.
|