Физиологические особенности гладких мышц.
Физиологические особенности гладких мышц.
Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:
1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;
2) самопроизвольную автоматическую активность;
3) сокращение в ответ на растяжение;
4) пластичность (уменьшение растяжения при увеличении растяжения);
5) высокую чувствительность к химическим веществам.
Физиологической особенностью сердечной мышцы является ее автоматизм. Возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.
Механизмы мышечного сокращения
Электрохимический этап мышечного сокращения.
1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.
2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.
3. Электрическая стимуляция места контакта приводит ки образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca и повышению их внутриклеточной концентрации.
Хемомеханический этап мышечного сокращения.
Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:
1) ионы Ca запускают механизм мышечного сокращения;
2) за счет ионов Ca происходит скольжение тонких актиновых нитей по отношению к миозиновым.
В покое, когда ионов Ca мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательно заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca:
1) Ca2+ реагирует с трипонином;
2) Ca2+ активирует АТФ-азу;
3) Ca2+ снимает заряды с АДФ, АТФ, АТФ-азы.
Взаимодействие ионов Ca с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.
Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca.
Физиология скелетных и гладких мышц
У человека три вида мышц:
1. поперечнополосатые мышцы скелета,
2. поперечнополосатая мышца сердца – миокард и
3. гладкие мышцы, образуюцие стенки полых внутренних органов и сосудов.
Анатомической и функциональной единицей скелетных мышц является нейромоторная единица - двигательный нейрон и иннервируемая им группа мышечных волокон. Импульсы, посылаемые мотонейроном, приводят в действие все образующие ее мышечные волокна.
Скелетные мышцы состоят из большого количества мышечных волокон. Волокно поперечнополосатой мышцы имеет вытянутую форму, диаметр его от 10 до 100 мкм, длина волокна от нескольких сантиметров до 10-12 см. Мышечная клетка окружена тонкой мембраной – сарколеммой, содержит саркоплазму (протоплазму) и многочисленные ядра. Сократительной частью мышечного волокна являются длинные мышечные нити – миофибриллы, состоящие в основном из актина, проходящие внутри волокна от одного конца до другого, имеющие поперечную исчерченность. Миозин в гладких мышечных клетках находится в дисперсном состоянии, но содержит много белка, играющего важную роль в поддержании длительного тонического сокращения.
В период относительного покоя скелетные мышцы полностью не расслабляются и сохраняют умеренную степень напряжения, т.е. мышечный тонус.
Основные функции мышечной ткани:
1) двигательная – обеспечение движения
2) статическая – обеспечение фиксации, в том числе и в определенной позе
3) рецепторная – в мышцах имеются рецепторы, позволяющие воспринимать собственные движения
4) депонирующая – в мышцах запасаются вода и некоторые питательные вещества.
Физиологические свойства скелетных мышц:
Возбудимость. Ниже, чем возбудимость нервной ткани. Возбуждение распространяется вдоль мышечного волокна.
Проводимость. Меньше проводимости нервной ткани.
Рефрактерный период мышечной ткани более продолжителен, чем нервной ткани.
Лабильность мышечной ткани значительно ниже, чем нервной.
Сократимость – способность мышечного волокна изменять свою длину и степень напряжения в ответ на раздражение пороговой силы.
При изотоническом сокращении изменяется длина мышечного волокна без изменения тонуса. При изометрическом сокращении возрастает напряжение мышечного волокна без изменения его длины.
В зависимости от условий стимуляции и функционального состояния мышцы может возникнуть одиночное, слитное (тетаническое) сокращение или контрактура мышцы.
Одиночное мышечное сокращение. При раздражении мышцы одиночным импульсом тока возникает одиночное мышечное сокращение.
Амплитуда одиночного сокращения мышцы зависит от количества сократившихся в этот момент миофибрилл.
Тетаническое сокращение. В естественных условиях к мышечным волокнам поступают не одиночные, а ряд нервных импульсов, на которые мышца отвечает длительным, тетаническим сокращением, или тетанусом. К тетаническому сокращению способны только скелетные мышцы.
Гладкие мышцы и поперечнополосатая мышца сердца не способны к тетаническому сокращению из-за продолжительного рефрактерного периода.
В электрофизиологии рефрактерным периодом (периодом рефрактерности) называют[1] период времени после возникновения на возбудимой мембране потенциала действия, в ходе которого возбудимость мембраны снижается, а затем постепенно восстанавливается до исходного уровня.
Абсолютный рефрактерный период — интервал, в течение которого возбудимая ткань не способна генерировать повторный потенциал действия (ПД), каким бы сильным ни был инициирующий стимул.
Относительный рефрактерный период — интервал, в течение которого возбудимая ткань постепенно восстанавливает способность формировать потенциал действия. В ходе относительного рефрактерного периода стимул, более сильный, чем тот, который вызвал первый ПД, может привести к формированию повторного ПД.
Тетанус возникает вследствие суммации одиночных мышечных сокращений. Чтобы возник тетанус, необходимо действие повторных раздражений (или нервных импульсов) на мышцу еще до того, как закончится ее одиночное сокращение.
Утомление мышц. При длительном ритмическом раздражении в мышце развивается утомление. Признаками его являются снижение амплитуды сокращений, увеличение их латентных периодов, удлинение фазы расслабления и, наконец, отсутствие сокращений при продолжающемся раздражении.
Еще одна разновидность длительного сокращения мышц - контрактура. Она продолжается и при снятии раздражителя. Контрактура мышцы наступает при нарушении обмена веществ или изменении свойств сократительных белков мышечной ткани. Причинами контрактуры могут быть отравление некоторыми ядами и лекарственными средствами, нарушение обмена веществ, повышение температуры тела и другие факторы, приводящие к необратимым изменениям белков мышечной ткани.
Физиологические особенности гладких мышц.
Гладкие мышцы образуют стенки (мышечный слой) внутренних органов и кровеносных сосудов. В миофибриллах гладких мышц нет поперечной исчерченности. Это обусловлено хаотичным расположением сократительных белков. Волокна гладких мышц относительно короче.
Гладкие мышцы менее возбудимы, чем поперечнополосатые. Возбуждение по ним распространяется с небольшой скоростью – 2-15 см/с. Возбуждение в гладких мышцах может передаваться с одного волокна на другое, в отличие от нервных волокон и волокон поперечнополосатых мышц.
Сокращение гладкой мускулатуры происходит более медленно и длительно.
Рефрактерный период в гладких мышцах более продолжителен, чем в скелетных.
Важным свойством гладкой мышцы является ее большая пластичность, т.е. способность сохранять приданную растяжением длину без изменения напряжения. Данное свойство имеет существенное значение, так как некоторые органы брюшной полости (матка, мочевой пузырь, желчный пузырь) иногда значительно растягиваются.
Характерной особенностью гладких мышц является их способность к автоматической деятельности, которая обеспечивается нервными элементами, заложенными в стенках гладкомышечных органов.
Адекватным раздражителем для гладких мышц является их быстрое и сильное растяжение, что имеет большое значение для функционирования многих гладкомышечных органов (мочеточник, кишечник и другие полые органы)
Особенностью гладких мышц является также их высокая чувствительность к некоторым биологически активным веществам (ацетилхолин, адреналин, норадреналин, серотонин и др.).
Гладкие мышцы иннервируются симпатическими и парасимпатическими вегетативными нервами, которые, как правило, оказывают противоположное влияние на их функциональное состояние.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|