|
Гормональная регуляция синтеза и мобилизации жиров.
В абсорбтивный период при увеличении соотношения инсулин/глюкагон в печени активируется синтез жиров. В жировой ткани индуцируется синтез ЛП-липазы в адипоцитах и осуществляется её экспонирование на поверхность эндотелия; следовательно, в этот период увеличивается поступление жирных кислот в адипоциты. Одновременно инсулин активирует белки-переносчики глюкозы - ГЛЮТ-4. Поступление глюкозы в адипоциты и гликолиз также активируются. Результат действия инсулина на обмен углеводов и жиров в печени - увеличение синтеза жиров и секреция их в кровь в составе ЛПОНП. ЛПОНП доставляют жиры в капилляры жировой ткани, где действие ЛП-липазы обеспечивает быстрое поступление жирных кислот в адипоциты, где они депонируются в составе триацилглицеринов.
75. Патология обмена холестерина у детей. Наследственные нарушения липидного обмена: семейная гиперхолестеринемия и семейная триглицеридемия.
Содержание ЛП в крови зависит от ритма питания. После приема пищи увеличивается концентрация ХМ. В постабсорбтивный период в крови отсутствуют ХМ и циркулируют только ЛПОНП-15%, ЛПНП-60% и ЛПВП-25%. Концентрация ХЛ в крови здорового человека составляет 150-200мг% или 5,6-6,3ммоль/л, а концентрация жиров 1-2,3ммоль/л. Повышение содержания ЛП (гиперлипопротеинемия) связано с увеличением в крови ХЛ (гиперхолистеринемия) и ТАГ. В связи с этим различаются 3 формы гиперлипопротеинемии: 1. гиперхолистеринемия, обусловленная повышением концентрации ЛПНП и ЛПВП; 2. гипертриацилглицеридемия, связанная с повышением концентрации ХМ и ЛПОНП; 3. смешанная форма. Гиперлипопротеинемии бывают наследственные (первичными) и приобретенными (вторичными) примерами первичных гиперлипопротеинемий являются: 1. гиперхиломикронемия.
76. Обмен аминокислот и белков в питании ребенка. Понятие об азотистом балансе. Физиологическая азотемия новорожденных.
Для оценки состояния обмена белков используется понятие азотистый баланс. Азотистый баланс – разница между введением с пищей азота и выведением его в виде конечных продуктов азотистого обмена.Различают 3 вида азотистого баланса:1)Положительный – количество выводимого из организма азота меньше количества азота, вводимого с пищей. Азот остается в организме и расходуется на синтез белков. Характерен для растушего организма и во время беременности. 2)Отрицательный – количество выделяемого азота превышает количество азота, поступающего в течение суток. Встречается при голодании, белковой недостаточности, тяжелых заболеваниях, когда происходит интенсивный распад белков тела. Отрицательный азотистый баланс наблюдается у пожилых людей. 3)Азотистое равновесие – количество азота выводимого из организма, равно количеству получаемого с пищей азота. Характерно для здорового взрослого человека. Недостаток в пище одной незаменимой аминокислоты ведет к неполному усвоению других аминокислот. Для человека наиболее ценны белки молока, яиц, мяса, т.к. их аминокислотный состав ближе к аминокислотному составу органов и тканей человека. Азотемия — повышенное содержание в крови азотистых продуктов обмена, выводимых почками.
77. Источники и пути использования аминокислот в тканях (общая схема). Азотистый баланс. Полноценные и неполноценные белки. Переваривание белков в полости желудка. Ферменты, расщепляющие белки. Соляная кислота, ее роль. Гормональная регуляция сокоотделени. Состав желудочного сока, методы его исследования, диагностическое значение. Определение уропепсина.
Источники и пути использования аминокислот в клетках. Источники свободных аминокислот в клетках - белки пищи, собственные белки тканей и синтез аминокислот из углеводов. Аминокислоты - органические соединения, являющиеся основной составляющей частью белков (протеинов). Аминокислоты определяют биологическую специфичность белков и их пищевую ценность. Нарушение обмена аминокислот является причиной многих болезней. Аминокислоты всасываются из желудочно-кишечного тракта и с кровью поступают во все органы и ткани, где используются для синтеза белков и подвергаются различным изменениям. В крови поддерживается постоянная концентрация аминокислот. В мышцах, ткани головного мозга и печени содержание свободных аминокислот во много раз выше, чем в крови, и менее постоянно. Аминокислоты делятся на незаменимые (валин, лейцин, фенилаланин, изолейцин, метионин, триптофан, треонин, лизин); частично заменимые (аргинин и гистидин); заменимые (аланин, аспарагин, аспарагиновая кислота, глицин (гликокол), серин, глутамин, пролин, тирозин, глутаминовая кислота, цистеин. Незаменимые аминокислоты не синтезируются в организме человека, но необходимы для нормальной жизнедеятельности. Они должны поступать в организм с пищей. При недостатке незаменимых аминокислот задерживается рост и развитие организма. В желудке переваривание белков происходит при действии протеолитического фермента пепсина; существенную роль в этом процессе играет соляная кислота желудочного сока. Соляная кислота образуется в обкладочных клетках желудочных желез и секретируется в полость желудка, где ее концентрация достигает 0,16 М (около 0,5 %). За счет этого желудочный сок имеет низкое значение рН, в пределах 1-2. Соляная кислота, помимо активации пепсиногена, выполняет и другие важные функции. В кислой среде желудочного сока большинство белков денатурируется, что облегчает их последующее переваривание пепсином. Конечно, если употребляется пища, обработанная при высокой температуре (например, вареное мясо), эта роль соляной кислоты не имеет значения. Кроме того, кислый поджелудочный сок, обладая бактерицидным действием, создает барьер для попадания болезнетворных бактерий в кишечник. Протеолитические ферменты — белки, пептид-гидролазы, ферменты класса гидролаз, расщепляющие пептидные связи между аминокислотами в белках и пептидах. Протеолитические ферменты играют важнейшую роль в переваривании белков пищи в желудке и кишечнике человека. Большинство протеолитических ферментов органов пищеварения продуцируется в виде проферментов. Физиологический смысл этого заключается в том, чтобы акт продукции фермента (профермента) был отделен от акта его активации — превращения в фермент и, таким образом, белки тканей, продуцирующих ферменты, не подвергались воздействию этих самых ферментов. Протеазы подразделяются на: экзопептидазы (пептидазы), гидролизующие (расщепляющие), преимущественно, внешние пептидые связи в белках и пептидах эндопептидазы (протеиназы), гидролизующие, преимущественно, внутренние пептидые связи Химический состав желудочного сока: вода (995 г/л); хлориды (5—6 г/л); сульфаты (10 мг/л); фосфаты (10—60 мг/л); гидрокарбонаты (0—1,2 г/л) натрия, калия, кальция, магния; аммиак (20—80 мг/л). В сутки в желудке взрослого человека вырабатывается около 2 л желудочного сока. Уропепсин (пепсиноген мочи) выделяется почками в повышенных количествах при язвенной болезни и гиперацидном гастрите, стероидной терапии, болезни Иценко—Кушинга. Понижено выделение уропепсина при желудочной ахилии, гипо– и анацидном гастритах, раке желудка, аддисоновой болезни
78. Протеолитические ферменты поджелудочной железы: энтерокиназа. Роль секретина для выработки сока поджелудочной железы. Диагностическое значение исследования дуоденального сока. Гидролиз продуктов переваривания белков в кишечнике. Ферменты кишечного сока. Пристеночное и полостное пищеварение. Всасывание аминокислот. Факторы, влияющие на этот процесс.
Панкреатический сок имеет высокую концентрацию бикарбонатов, которые обусловливают его щелочную реакцию. Его рН колеблется от 7,5 до 8,8. В соке содержатся хлориды натрия, калия и кальция, сульфаты и фосфаты. Вода и электролиты выделяются в основном центроацинарными и эпителиальными клетками выводах протоков. В состав сока входит и слизь, которая вырабатывается бокаловидными клетками главного протока поджелудочной железы. Панкреатический сок богат ферментами, осуществляющими гидролиз белков, жиров и углеводов. Протеолитические ферменты (трипсин, химотрипсин, эластаза, карбок-сипептидазы А и В) выделяются панкреацитами в неактивном состоянии, что предотвращает самопереваривание клеток. Трипсиноген превращается в трипсин в полости двенадцатиперстной кишки под влиянием фермента энтерокиназы, который вырабатывается слизистой оболочкой кишки. Выделение энторокинизы обусловлено влиянием желчных кислот. С появлением трипсина наступает аутокаталитический процесс активации всех протеолитических ферментов, выделяющихся в зимогенной форме. Трипсин, химотрипсин и эластаза расщепляют внутренние пептидные связи белковой молекулы и высокомолекулярных полипептидов. Содержащаяся в панкреатическом соке а-амилаза расщепляет крахмал на декстрины, мальтозу и мальтотриозу. Панкреатическая липаза секретируется в активной форме. Колипаза образует комплекс с панкреатической липазой. В образовании этого комплекса участвуют соли жирных кислот. Липаза гидролизует жир на моноглицериды и жирные кислоты. Кишечный сок — сложный по составу пищеварительный сок, вырабатываемый клетками слизистой оболочки тонкой кишки. Он содержит до 2,5 % твёрдых веществ, белков, свёртывающийся от жара, ферменты и соли, между которыми особенно преобладает сода, придающая всему соку резко щелочную реакцию. Полостное пищеварение в тонкой кишке осуществляется за счет пищеварительных секретов и их ферментов, поступивших в полость тонкой кишки (секрет поджелудочной железы, желчь, кишечный сок). Полостное пищеварение в тонкой кишке осуществляется как в жидкой фазе кишечного химуса, так и на границе фаз: на поверхности пищевых частиц, растительных волокон, сохраненных и разрушенных десквамированных энтероцитов, хлопьев (флокул), образовавшихся в результате взаимодействия кислого содержимого желудка и щелочного дуоденального химуса. В результате полостного пищеварения гидролизуются крупномолекулярные вещества и образуются в основном олигомеры. Последующий их гидролиз происходит в зоне, прилегающей к слизистой оболочке, и непосредственно на ней. В слое кишечной слизи адсорбированы ферменты из полости тонкой кишки (панкреатические и кишечные), из разрушенных энтероцитов и транспортированные в кишку из кровотока
79. Замедленное переваривание белков в желудке у детей. Особенности исследования функции желудка в детском возрасте.
Процесс расщепления пищевых веществ начинается в полости рта, где пища размельчается и смешивается со слюной, способствующей перевариванию крахмала. А у ребенка до 6 месяцев совсем нет зубов, слюнные железы у него до 4 месяцев вырабатывают мало слюны с небольшим содержанием в ней фермента. Слюнные железы начинают усиленно вырабатывать слюну только с 4-5 месяцев жизни. Железы желудка ребенка также выделяют незначительное количество ферментов, особенно мало фермента, переваривающего жиры (липазы). Желудочный сок младенца первых месяцев жизни обладает малой кислотностью, достаточной только для переваривания и усвоения женского молока. Постепенно переваривающая активность желудочного сока нарастает, и уже к концу первого года желудок способен переваривать более сложную пищу, однако кислотность приближается к активности взрослых только к школьному возрасту ребенка. Вместимость желудка у новорожденных очень маленькая, всего 30-35 мл, в возрасте 3 месяцев - уже 100 мл и к году - 250 мл. Количество и активность пищеварительных ферментов кишечника у детей первых месяцев жизни также довольно низкие. Важной и отличительной особенностью кишечника ребенка грудного возраста является повышенная проницаемость его стенок. Поэтому при различных заболеваниях, особенно желудочно-кишечных, продукты неполного переваривания пищи - токсины проникают через кишечные стенки и поступают в кровь, вызывая у ребенка тяжелое состояние.
80. Прямое и непрямое дезаминирование аминокислот. Окислительное дезаминирование аминокислот. Роль глутамата, глутаматдегидрогеназы. Значение дезаминирования. Пути обезвреживания аммиака в организме. Роль глутамина в обезвреживании и транспорта аммиака. Образование и выведение солей аммония почками.
Дезаминирование АК — реакция отщепления α-аминогруппы от АК, в результате чего образуется соответствующая α-кетокислота и выделяется молекула аммиака.
Прямое дезаминирование - это дезаминирование, которое происходит в 1 стадию с участием одного фермента. Прямому дезаминированию повергаются глу, гис, сер, тре, цис.
Окислительное дезаминирование -самый активный вид прямого дезаминирования АК. 1. Глутаматдегидрогеназа (глу-ДГ) - олигомер, состоящий из 6 субъединиц (молекулярная масса 312 кД), содержит кофермент НАД+. Глу-ДГ катализирует обратимое дезаминирование глу, очень активна в митохондриях клеток практически всех органов, кроме мышц. Глу-ДГ аллостерически ингибируют АТФ, ГТФ, НАДH2, активирует избыток АДФ. Индуцируется Глу-ДГ стероидными гормонами (кортизолом). Реакция идёт в 2 этапа. Вначале происходит ферментативное дегидрирование глутамата и образование α-иминоглутарата, затем — неферментативное гидролитическое отщепление иминогруппы в виде аммиака, в результате чего образуется α-кетоглутарат. При избытке аммиака реакция протекает в обратном направлении (как восстановительное аминирование α-кетоглутарата).
2. Оксидаза L-аминокислот. В печени и почках есть оксидаза L-АК, способная дезаминировать некоторые L-аминокислоты: Оксидаза L-АК имеет кофермент ФМН. Т.к. оптимум рН оксидазы L-АК равен 10,0, активность фермента очень низка и вклад ее в дезаминирование незначителен.
3. Оксидаза D-аминокислот. Оксидаза D-аминокислот также обнаружена в почках и печени. Это ФАД-зависимый фермент, с оптимумом рН в нейтральной среде. Оксидаза D-аминокислот превращает, спонтанно образующиеся из L-аминокислот, D-аминокислоты в кетокислоты.
81. Трансаминирование: специфичность аминотрансфераз и механизм их действия. Роль глутаминовой кислоты в этих процессах. Биологическая роль реакций трансаминирования. Диагностическое значение определения активности трансаминаз в сыворотке крови (инфаркт миокарда).
Трансаминирование — биохимическая ферментативная реакция обратимого переноса аминогруппы с аминокислоты на кетокислоту без промежуточного образования аммиака. Ферменты, катализирующие процесс, назвали трансаминазами, или аминотрансферазами. Продуктами чаще всего являются аланин, аспарагин и глутамат, так как соответствующие им кетокислоты образуются в процессе метаболизма углеводов. Трансаминирование играет важную роль в процессах мочевинообразования, глюконеогенеза, путях образования новых аминокислот. Трансаминирование аминокислот с образованием глутаминовой кислоты в сочетании с ёё дезаминированием НАД(Ф)-зависимой глутаматдегидрогеназой называется непрямым дезаминированием аминокислот (трансдезаминирование).
82. Обмен безазотистого остатка аминокислот. Гликогенные и кетогенные аминокислоты. Синтез глюкозы из аминокислот (глюкозо-аланиновый цикл). Синтез аминокислот из продуктов обмена глюкозы: синтез серина, глицина. Роль фолиевой кислоты в обмене этих аминокислот. Использование глицина для синтеза различных веществ в организме.
За сутки у человека распадаются примерно 100г АК. Катаболизм всех АК сводится к образованию шести веществ, вступающих в общий путь катаболизма: ПВК, ацетил-КоА, α-кетоглутарат, сукцинил-КоА, фумарат и ЩУК. Эти вещества окисляются в ЦТК для образования АТФ или используются для синтеза глюкозы и кетоновых тел.
Гликогенные аминокислоты - АК, которые превращаются в ПВК и промежуточные продукты ЦТК (а-КГ, сукцинил-КоА, фумарат, ЩУК). Они через ЩУК, используются в глюконеогенезе (ала, асн, асп, гли, глу, глн, про, сер, цис, арг, гис, вал, мет, тре).
Кетогенные аминокислоты – АК, которые в процессе катаболизма превращаются в ацетоацетат (Лиз, Лей) или ацетил-КоА (Лей) и могут использоваться в синтезе кетоновых тел.
Смешанные (гликкетогенными) аминокислоты – АК, при катаболизме которых образуются метаболит цитратного цикла и ацетоацетат (Три, Фен, Тир) или ацетил-КоА (Иле). Эти АК используются для синтеза глюкозы и кетоновых тел.
83. Декарбоксилирование аминокислот. Биогенные амины: гистамин, серотонин, гаммааминомасляная кислота, катехоламины. Их происхождение, функции, расщепление. Образование токсических аминов в толстом кишечнике, их обезвреживание в печени.
Процесс отщепления карбоксильной группы аминокислот в виде CO2 получил название декарбоксилирования. В животных тканях установлено декарбоксилирование следующих аминокислот и их производных: тирозина,триптофана, 5-окситриптофана, валина, серина, гистидина, глутаминовой и γ-оксиглутаминовой кислот, 3,4-диоксифенилаланина, цистеина, аргинина, орнитина, S-аденозилметионина и α-аминомалоновой кислоты. Помимо этого, у микроорганизмов и растений открыто декарбоксилирование ряда других аминокислот. Биогенные амины — вещества, обычно образующиеся в организме животных или растений из аминокислот при их декарбоксилировании (удалении карбоксильной группы) ферментами декарбоксилазами и обладающие высокой биологической активностью. К биогенным аминам относятся дофамин, норадреналин и адреналин (синтезируются изначально из аминокислоты тирозина), серотонин, мелатонин и триптамин и многие другие соединения. В организме животных многие биогенные амины выполняют роль гормонов и нейромедиаторов. Разлагаются в организме при участии ферментов аминоксидаз. Реакции декарбоксилирования являются необратимыми. Они катализируются специфическими ферментами – декарбоксилазами аминокислот, отличающимися от декарбоксилаз α-кетокислот как белковым компонентом, так и природой кофермента.
84. Обмен фенилаланина и тирозина. Образование катехоламинов, гормонов щитовидной железы, меланина. Нарушения процессов распада тирозина: фенилкетонурия, алкаптонурия, альбинизм.
Фенилаланин – незаменимая аминокислота, так как в клетках животных не синтезируется ее бензольное кольцо. Метаболизм метионина осуществляется по 2-м путям: включается в белки или превращается в тирозин под действием специфической монооксигеназы – фенилаланингидроксилазы. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений как катехоламины, тироксин, меланин и др. В щитовидной железе из тирозина синтезируются гормоны тироксин и трийодтиронин. В мозговом веществе надпочечников и нервной ткани тирозин является предшественником катехоламинов. Промежуточным продуктом их синтеза является ДОФА. Однако в отличие от меланоцитов, гидроксилирование тирозина осуществляется под действием тирозингидроксилазы, которая является Fe2+- зависимым ферментом, и его активность регулирует скорость синтеза катехоламинов.
85. Лабильность дезаминирования в гепатоцитах ребенка. Повышенная концентрация аминокислот в крови и моче ребенка раннего возраста. Своеобразие обмена некоторых аминокислот. Фенилаланин, тирозин.
О гипераминоацидуриях говорят в том случае, когда выведение одной или нескольких аминокислот с мочой превышает физиологические значения. В зависимости от происхождения можно выделить: 1. метаболические или преренальные и 2. ренальные аминоацидурий. При метаболических аминоацидуриях одной или нескольких аминокислот образуется больше, нежели в норме, или метаболизируется меньшее их количество. Фенилкетонурия. Фенилпировиноградная олигофрения (болезнь Фёллинга). Энзимопатия, наследуемая по аутосомно-рецессивному типу. Ее биохимической сущностью является невозможность превращения фенилаланина в тирозин вследствие отсутствия фермента фенилаланин-оксидазы. Клинические проявления этой аномалии связаны с выраженным повреждением мозга, сопровождающимся умственной отсталостью. Это нередкое заболевание - одна из наиболее частых причин олигофрении. Среди населения встречается с частотой 1:10 000-1: 20 000. Алкаптонурия. Заболевание характеризуется темно-коричневой окраской мочи, которая появляется при стоянии на воздухе. Наследственная энзимопатия, у больных отсутствует фермент гомогентизиназа. Гомогентизиновая кислота, выделяемая в большем количестве, на воздухе окисляется, приобретая коричневый цвет. Пеленки и нижнее белье ребенка также окрашиваются, что облегчает постановку диагноза. Кроме описанной выше особенности мочи, при этой аномалии имеются только два других симптома: появляющаяся в более позднем возрасте артропатия и синеватая окраска хрящей, легко обнаруживаемая на ушной раковине. Лечения нет. Альбинизм также является наследственной аномалией обмена ароматических аминокислот. При этом отсутствует энзим тирозиназа, который катализирует превращение тирозина в ДОФА - диоксифенилаланиц. Так как ДОФА - основа для синтеза меланина, то носители аномалии светлокожие, светловолосые люди, у которых через лишенную пигментации радужную оболочку просвечивает красноватая сосудистая сеть. Больным следует избегать прямого солнечного света. 86. Генетически детерминированные патологии аминокислот у детей. Нарушения обмена триптофана, тирозина, фенилаланина.
Нарушения обмена фенилаланина. Фенилаланин в норме необратимо окисляется в тирозин. Если же в печени нарушается синтез необходимого для этого фермента фенилаланингидроксилазы, то окисление фенилаланина идет по пути образования фенилпировиноградной и фенилмолочной кислот — развивается фенилкетонурия. Однако этот путь обладает малой пропускной способностью и поэтому фенилаланин накапливается в большом количестве в крови, тканях и цереброспинальной жидкости, что впервые же месяцы жизни ведет к тяжелому поражению центральной нервной системы и неизлечимому слабоумию. Из-за недостаточного синтеза тирозина снижается образование меланина, что обусловливает посветление кожи и волос. Кроме того, при увеличенной выработке фенилпировиноградной кислоты тормозится активность фермента (дофамингидроксилазы), необходимого для образования катехоламинов (адреналина, норадреналина). Поэтому тяжесть наследственного заболевания определяется комплексом всех этих нарушений.
Нарушения обмена тирозина. Обмен тирозина осуществляется несколькими путями. При недостаточном превращении образовавшейся из тирозина парагидроксифенилпировиноградной кислоты в гомогентизиновую первая, а также тирозин выделяются с мочой. Это нарушение носит название тирозиноза. Если же задержка окисления тирозина происходит в момент превращения гомогентизиновой кислоты в малеилацетоуксусную, развивается алкаптонурия. Фермент, окисляющий гомогентизиновую кислоту (оксидаза гомогентизиновой кислоты), образуется в печени. В норме он настолько быстро разрывает ее гидрохиноновое кольцо, что кислота "не успевает" появиться в крови, а если и появляется, то быстро выводится почками. При наследственном дефекте этого фермента гомогентизиновая кислота в большом количестве обнаруживается в крови и моче. Моча при стоянии на воздухе, а также при добавлении к ней щелочи становится черной. Это объясняется окислением гомогентизиновой кислоты кислородом воздуха и образованием в ней алкаптона ("захватывающий щелочь"). Гомогентизиновая кислота из крови проникает в ткани — хрящевую, сухожилия, связки, внутренний слой стенки аорты, вследствие чего появляются темные пятна в области ушей, носа, щек, на склерах. Иногда развиваются тяжелые изменения в суставах.
Нарушения обмена триптофана. Основной путь метаболизма триптофана приводит к синтезу амида никотиновой кислоты, который играет очень важную роль в жизнедеятельности организма, являясь простетической группой ряда окислительных ферментов — никотинамидадениндинук-леотида (НАД) и его восстановленной формы никотинамидаденин-динуклеотидфосфата (НАДФ). Поэтому при недостаточности никотиновой кислоты и ее амида нарушаются многие обменные реакции, а при значительном дефиците этих веществ развивается пеллагра. Нарушение обмена триптофана может проявиться также в изменении количества образующегося из него серотонина.
87. Мочевина как конечный продукт азотистого обмена. Биосинтез мочевины, его этапы. Связь орнитинового цикла с метаболизмом фумаровой и аспарагиновой кислот. Нарушения синтеза и выведения мочевины. Гипераммониемия.
Мочевина — химическое соединение, диамид угольной кислоты. Белые кристаллы, растворимые в полярных растворителях (воде, этаноле, жидком аммиаке). Мочевина является конечным продуктом метаболизма белка у млекопитающих. Производные нитрозомочевин находят применение в фармакологии в качестве противоопухолевых препаратов. Анализ на мочевину входит в биохимический анализ крови. Нормы:
· дети до 14 лет — 1,8—6,4 ммоль/л
· взрослые до 60 лет — 2,5—6,4 ммоль/л
· взрослые старше 60 лет — 2,9—7,5 ммоль/л
Синтез мочевины — циклический процесс состоит из пяти реакций, катализируемый пятью отдельными ферментами. Суммарное уравнение: СO2+NH3+2H2O+Аспарат → H2N—CO—NH2+Фумарат. При недостаточной активности ферментов орнитинового цикла возникают гипераммониемии— патологические состояния сопровождающиеся повышением концентрации аммиака в крови.
88. Пути обезвреживания аммиака в организме ребенка. Преобладание у детей раннего возраста урикотелического пути обмена аммиака. Причины нарастания аммиака крови.
В тканях аммиак находится преимущественно в виде иона аммония NН в равновесии с небольшой концентрацией неионизированного аммиака. Одним из путей связывания и обезвреживания аммиака в организме, в частности в мозге, сетчатке, почках, печени и мышцах - это биосинтез амидов глутаминовой и аспарагиновой кислот (глутамина или аспарагина). Обезвреживание аммиака путем синтеза глутамина имеет и анаболическое значение, поскольку глутамин используется для синтеза ряда соединений. Прежде всего нужно отметить, что глутамин — одна из 20 аминокислот, входящих в белки. Кроме того, амидная группа глутамина используется для синтеза аспарагина, глюкозамина и других аминосахаров, пуриновых и пиримидиновых нуклеотидов. Таким образом, в этих реакциях азот аммиака включается в разнообразные структурно-функциональные компоненты клетки. Экскреция аммиака с мочой в норме невелика — около 0,5 г в сутки. Но она в несколько раз повышается при ацидозе, т. е. при увеличении содержания кислот в организме. Аммиак в почках образуется главным образом за счет амидной группы глутамина. Глутамин гидролизуется активируемой фосфатом глутаминазой, имеющейся в клетках эпителия канальцев почки. Часть аммиака (примерно 30%) образуется другим путем — в результате непрямого дезаминирования аминокислот. Образующийся аммиак нейтрализует кислоты: NH3 + Н+ → NH4+. Неионизированные аммиак и кислоты в клетках находятся в равновесии с их ионизированными формами. Через клеточные мембраны проникают преимущественно неионизированные аммиак и кислоты, и в просвете почечного канальца (т. е. уже в моче) аммиак акцептирует протон кислоты, образуя аммонийную соль, которая выводится из организма. Экскреция аммиака почками служит для выведения именно кислот, а не азота, на что указывает значительная скорость экскреции при ацидозе, малая — при нормальной кислотности межклеточной жидкости и крови, и отсутствие экскреции аммиака при алкалозе. Одновременно этот процесс обеспечивает сохранение организмом ионов Na+, которые в отсутствие ионов аммония выводились бы с анионами кислот. Потеря таких количеств Na+, которые необходимы для выведения кислот при ацидозе, могла бы вызвать снижение осмотического давления межклеточной жидкости и крови, а вследствие этого уменьшение объема межклеточной жидкости, т. е. обезвоживание тканей.
89. Биосинтез пиримидиновых нуклеотидов, этапы этого процесса. Оротацидурия. Распад пиримидиновых нуклеотидов. Биосинтез дезоксирибонуклеотидов. Участие УТФ и ЦТФ в обменных процессах.
Синтез пуринов и пиримидинов приводит к монофосфатам, соответственно ИМФ (IMP] и УМФ (UMP). Из этих двух предшественников синтезируются все другие нуклеотиды. Синтез пуриновых нуклеотидовосуществляется из инозинмонофосфата[ИМФ (IMP)]. Его основание гипоксантин превращается в две стадии соответственно в аденин или гуанин. Образующиеся нуклеозидмонофосфаты АМФ(AMP) и ГМФ (GMP) переходят в дифосфаты АДФ(ADP) и ГДФ (GDP) под действием нуклеозидфосфаткиназ и, наконец, фосфорилируютсянуклеозиддифосфаткиназами до трифосфатов АТФ(АТР) и ГТФ (GTP). Нуклеозидтрифосфаты служат строительными блоками для РНК (RNA) или функционируют в качестве коферментов. Преобразование рибонуклеотидов в дезоксирибонуклеотиды происходит на стации дифосфатов и катализируется нуклеозиддифосфат-редуктазой. Пути биосинтеза пиримидиновых нуклеотидов:прежде всего исходный УМФфосфорилируется до ди-, а затем трифосфата УТФ. УТФ превращается цитидинтрифосфат-синтазой (CTP-синтаза) в ЦТФ. 2'-Дезоксирибоза, структурный элемент ДНК, не синтезируется в виде свободного сахара, а образуется на стадии дифосфата при восстановлении ρибонуклеозиддифосфатов. Такое восстановление — сложный процесс, в котором участвует несколько белков. Необходимые восстановительные эквиваленты поставляются НАДФН(NADPH). Тем не менее, они не переносятся непосредственно от кофермента к субстрату, а проходит прежде всего через ряд окислительно-восстановительных реакций. На первой стадии тиоредоксинредуктаза восстанавливает с помощью связанного с ферментом флавинадениндинуклеотида небольшой белок, тиоредоксин. При этом дисульфидный мостик в тиоредоксине расщепляется. Образующиеся SH-группы снова восстанавливают каталитически активный дисульфидный мостик в нуклеозиддифосфат-редуктазе («рибонуклеотид-редуктаза»). Свободные SH-группы являются действенными донорами электронов для восстановления рибонуклеотиддифосфатов. Рибонуклеотид-редуктаза эукариот представляет собой тетрамер, состоящий из двух R1- и R2 -субъединиц. Кроме упомянутого дисульфидного мостика,в ферменте во время реакции образуется тирозин-радикал,генерирующий радикал в субстрате. Последний отщепляет молекулу воды и вследствие этого переходит в радикал-катион. При последующем восстановлении образуется остаток дезоксирибозы и регенерируется тирозиновый радикал. Процесс регуляции рибонуклеотид-редуктазы имеет довольно сложный механизм. Субстратная специфичность и активность фермента контролируются двумя аллостерическими центрами связывания R1-субъединицы. АТФ и дАТФ соответственно повышают и уменьшают активность редуктазы, связываясь с центром а. С центром б взаимодействует другой нуклеотид, изменяющий в результате связывания субстратную специфичность фермента.
90. Распад нуклеиновых кислот. Нуклеазы пищеварительного тракта и тканей. Биосинтез пуриновых нуклеотидов. Источники атомов пуринового кольца. Синтез пуриновых нуклеотидов: аденина и гуанина. Распад пуриновых нуклеотидов, образование мочевой кислоты. Нарушения обмена пуриновых нуклеотидов, подагра, синдром Леша-Нихана.
Нуклеазы — большая группа ферментов, гидролизующих фосфодиэфирную связь между субъединицами нуклеиновых кислот. Различают несколько типов нуклеаз в зависимости от их специфичности: экзонуклеазы и эндонуклеазы, рибонуклеазы и дезоксирибонуклеазы, рестриктазы и некоторые другие. Рестриктазы занимают важное положение в прикладной молекулярной биологии.
Подагра — гетерогенное по происхождению заболевание, которое характеризуется отложением в разли чных тканях организма кристаллов уратов в форме моноурата натрия или мочевой кислоты. В основе возникновения лежит накопление мочевой кислоты и уменьшение её выделения почками, что приводит к повышению концентрации последней в крови (гиперурикемия). Клинически подагра проявляется рецидивирующим острым артритом и образованием подагрических узлов — тофусов. Чаще заболевание встречается у мужчин, однако в последнее время возрастает распространённость заболевания среди женщин, с возрастом распространённость подагры увеличивается.
Синдром Лёша — Нихена — наследственное заболевание, характеризующееся увеличением синтеза мочевой кислоты (у детей) вызванное дефектом фермента гипоксантин-гуанинфосфорибозилтрансферазы, который катализирует реутилизацию гуанина и гипоксантина — в результате образуется большее количество ксантина и, следовательно, мочевой кислоты.
91. Обмен нуклеиновых кислот и нуклеотидов у ребенка. Генетические нарушения, связанные с наследственными заболеваниями.
Обмен нуклеиновых кислот. В клетках тканей нуклеиновые кислоты распадаются под влиянием ферментов. Ферменты, расщепляющие полинуклеотидные цепи, называют нуклеазами, или фосфодиэстеразами, так как они ускоряют реакции разрыва межнуклеотидных фосфодиэфирных связей в молекулах нуклеиновых кислот. Различают эндонуклеазы и экзонуклеазы. Эндонуклеазы действуют на внутренние межнуклеотидные связи в молекулах ДНК и РНК. Таким образом, при их участии осуществляется деполимеризация нуклеиновых кислот, в основном до олигонуклеотидов. Экзонуклеазы отщепляют нуклеотиды с 3′- или 5'-конца полинуклеотидной цепи и обеспечивают распад нуклеиновых кислот до свободных нуклеотидов. По специфичности действия различают дезоксирибонуклеазы (ДНКазы, расщепляющие ДНК) и рибонуклеазы (РНКазы, гидролизующие РНК). В результате их действия образуются олигонуклеотиды и лишь небольшое количества мононуклеотидов. Рибо- и дезоксирибонуклеозидфосфаты расщепляются до нуклеозидов и фосфорной кислоты под действием фосфатаз (нуклеотидаз). Нуклеозиды могут расщепляться гидролитическим путем с участием фермента нуклеозидазы: Аденозин + Н2О → Аденин + рибоза Пентозы окисляются до CO2 и H2O; фосфорная кислота используется для фосфорилирования органических соединений или выводится из организма. Азотистые основания превращаются в конечные продукты обмена и выделяются с мочой. Продукты гидролиза нуклеиновых кислот поступают в клетки организма, где используются для синтеза нуклеотидов, нуклеиновых кислот, или же для удовлетворения энергетических потребностей клетки и организма.
92. Биосинтез ДНК (репликация): стехиометрия реакций, ДНК-полимераза, матрица. Повреждение и распад ДНК.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2025 stydopedia.ru Все материалы защищены законодательством РФ.
|