Сделай Сам Свою Работу на 5

МОДЕЛИРОВАНИЕ ЖИВЫХ ОРГАНИЗМОВ





БИОН – ЯЧЕЙКА ЖИЗНИ

ИСТОРИЯ БИОНИКИ

 

Справка

Бионика(от греч. biōn - элемент жизни, буквально - живущий), наука, пограничная между биологией и техникой, решающая инженерные задачи на основе моделирования структуры и жизнедеятельности организмов. Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками - электроникой, навигацией, связью, морским делом и др. БСЭ.1978г.

Бионика - наука об использовании в технике знаний о конструкции, принципе и технологическом процессе живого организма. Основу бионики составляют исследования по моделированию различных биологических организмов. Моделирование осуществляют на радиоэлектронной, электролитической, пневматической и других физико-химических основах. Бионическое моделирование отличается от моделирования, которое осуществляется в других науках. Как правило, модели бионики - несравненно более сложные динамические структуры. Их создание требует не только проведения специальных уточняющих исследований на живом организме, но и разработки специальных методов и средств для реализации и исследования столь сложных моделей. Формальным годом рождения бионики принято считать 1960 г. Учёные – бионики избрали своей эмблемой скальпель и паяльник, соединённые знаком интеграла, а девизом – «Живые прототипы – ключ к новой технике».



Прародителем бионики считается Леонардо да Винчи. Его чертежи и схемы летательных аппаратов были основаны на строении крыла птицы. В наше время, по чертежам Леонардо да Винчи неоднократно осуществляли моделирование орнитоптера.
Из современных учёных можно назвать имя Осипа М. Р. Дельгадо. С помощью своих радиоэлектронных приборов он изучал неврологическо-физические характеристики животных. И на их основе пытался разработать алгоритмы управления живыми организмами.
Подобные опыты проводились и в СССР, в Российской Федерации в связи с общим упадком науки - многие программы свёрнуты, а специалисты трудятся в зарубежных исследовательских центрах.

МОДЕЛИРОВАНИЕ ЖИВЫХ ОРГАНИЗМОВ

Создание модели в бионике - это половина дела. Для решения конкретной практической задачи необходима не только проверка наличия интересующих практику свойств модели, но и разработка методов расчёта заранее заданных технических характеристик устройства, разработка методов синтеза, обеспечивающих достижения требуемых в задаче показателей.
И поэтому многие бионические модели, до того как получают техническое воплощение, начинают свою жизнь на компьютере. Строится математическое описание модели. По ней составляется компьютерная программа - бионическая модель. На такой компьютерной модели можно за короткое время обработать различные параметры и устранить конструктивные недостатки.
Именно так, на основе программного моделирования, как правило, проводят анализ динамики функционирования модели; что же касается специального технического построения модели, то такие работы являются, несомненно, важными, но их целевая нагрузка другая. Главное в них - изыскание лучшей основы, на которой эффективнее и точнее всего можно воссоздать необходимые свойства модели. Накопленный в бионике практический опыт моделирования чрезвычайно сложных систем имеет общенаучное значение. Огромное число её эвристических методов, совершенно необходимых в работах такого рода, уже сейчас получило широкое распространение для решения важных задач экспериментальной и технической физики, экономических задач, задач конструирования многоступенчатых разветвлённых систем связи и т.п.



 

Сегодня бионика имеет несколько направлений.

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых тканей, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.



 

Яркий пример архитектурно-строительной бионики — полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. В чем же секрет? Оказывается, их строение сходно с конструкцией современных высотных фабричных труб — одним из последних достижений инженерной мысли. Обе конструкции внутри полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия стеблей — кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не "заглядывая" в природу. Идентичность строения была выявлена позже.

 

В последние годы бионика подтверждает, что большинство человеческих изобретений уже "запатентовано" природой. Такое изобретение ХХ века, как застежки "молния" и "липучки", было сделано на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.

 

Известные испанские архитекторы М.Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 г. начали исследования "динамических структур", а в 1991 г. организовали "Общество поддержки инноваций в архитектуре". Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект "Вертикальный бионический город-башня". Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен "принцип конструкции дерева".

 

Башня-город будет иметь форму кипариса высотой 1128 м с обхватом у основания 133 на 100 м., а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 этажей. Между кварталами — перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов — разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты — аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить еще несколько таких зданий-городов.

 

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного "морского уха", состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше. Такая технология может быть использована и для покрытия автомобилей.

 

Основными направлениями нейробионики являются изучение нервной системы человека и животных и моделирование нервных клеток-нейронов и нейронных сетей. Это дает возможность совершенствовать и развивать электронную и вычислительную технику.

 

Нервная система живых организмов имеет ряд преимуществ перед самыми современными аналогами, изобретенными человеком:

1. Гибкое восприятие внешней информации, независимо от формы, в которой она поступает (почерк, шрифт, цвет, тембр и т. д.).

2. Высокая надежность: технические системы выходят из строя при поломке одной или нескольких деталей, а мозг сохраняет работоспособность при гибели даже нескольких сотен тысяч клеток.

3. Миниатюрность. Например, транзисторное устройство с таким же числом элементов, как головной мозг человека, занимало бы объем около 1000 м3, тогда как наш мозг занимает объем 1,5 дм3.

4. Экономичность потребления энергии — разница просто очевидна.


5. Высокая степень самоорганизации — быстрое приспособление к новым ситуациям, к изменению программ деятельности. Эйфелева башня и берцовая кость.

К 100-й годовщине Великой французской революции в Париже была организована всемирная выставка. На территории этой выставки планировалось воздвигнуть башню, которая символизировала бы и величие Французской революции, и новейшие достижения техники. На конкурс поступило более 700 проектов, лучшим был признан проект инженера-мостовика Александра Гюстава Эйфеля. В конце ХIХ столетия башня, названная именем своего создателя, поразила весь мир ажурностью и красотой. 300-метровая башня стала своеобразным символом Парижа. Ходили слухи, будто бы построена башня по чертежам неизвестного арабского ученого. И лишь спустя более чем полстолетия биологи и инженеры сделали неожиданное открытие: конструкция Эйфелевой башни в точности повторяет строение большой берцовой кости, легко выдерживающей тяжесть человеческого тела. Совпадают даже углы между несущими поверхностями. Это ещё один показательный пример бионики в действии.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.