|
Эрвин Ласло. Век бифуркации. Часть III. Решающие 1990-е годы. Глава 9. Главный вопрос Опасная игра
Современный человек не полагается более на силу мышц в сражении, на скорость полета и на защитную маску или окраску в вопросах выживания. Для сохранения своей жизни он научился полагаться только на разум. Современный человек ведет роковую игру, где ставка — наше коллективное выживание и выживание всей биосферы в целом.
Около пяти миллионов лет назад эволюционная ветвь, которая привела к современному человеку, отделилась от африканских человекообразных обезьян — общих предков человека, шимпанзе и горилл. Человекообразные обезьяны — это четвероногие, опирающиеся при ходьбе на межфаланговые суставы передних конечностей; Homo — это прямоходящее двуногое. У человекообразных были мощные челюсти и небольшой головной мозг (в пределах 300—600 кубических сантиметров); у Homo была небольшая челюсть и головной мозг, четырехкратно превосходивший мозг человекообразных (объемом 1400—1600 кубических сантиметров). Большинство человекообразных приспособлены к жизни на деревьях; Homo был приспособлен к жизни на земле. Именно эта приспособленность и стала решающим фактором в эволюции разума. Почему некоторые стаи протогоминидов покинули деревья, до сих пор остается загадкой (некоторые антропологи считают, что протогоминиды были вытеснены из лесов в саванны физически более развитыми приматами, обитавшими на деревьях), но коль скоро они покинули деревья, их дальнейшая судьба была предопределена: они были обречены на некоторую форму разума — или на уничтожение. Вопрос, который стоит перед нами сейчас, — какого рода разум достаточен для выживания в XXI столетии? Человечеству, по словам Бакминстера Фуллера, предстоит последний экзамен. Это экзамен на интеллект: проверка коллективного IQ человека как биологического вида.
Разум присущ не только Homo, но и другим видам: другие животные также обладают развитыми формами интеллекта; если бы другим видам было необходимо и представилась возможность развить свой интеллект, то число разумных видов было бы больше. Киты и дельфины обладают интеллектом, но они живут в водной среде, более стабильной и более приспособленной для жизни этих существ. Разуму морских млекопитающих не нужно было эволюционировать в активный, манипулятивный разум людей — обитателей суши.
Разум такого типа требуется только тем, кто живет на суше, где для поддержания сложных биохимических реакций существенно наличие и удержание воды, непрекращающийся подвод свободной энергии и поддержание постоянной температуры.
Разум соответствующего типа мог появиться у различных видов, живущих на суше; в свое время такой интеллект мог возникнуть у динозавров. У одного из видов — стенаникозавра — для этого были благоприятные предпосылки: вместительный череп, большие глаза и длинные руки, но он исчез вместе с остальными динозаврами. Если бы стенани-козавр эволюционировал и приобрел высокоразвитый интеллект, биосфера могла бы быть населена ныне не людьми, а рептилиями — со всеми умопомрачительными последствиями.
В отличие от истории динозавров и обитающих в море млекопитающих, только случайное стечение обстоятельств сделало возможной и даже необходимой историю нашего вида, и наши далекие предки в борьбе за выживание сделали ставку на манипулятивный интеллект. Игра, которую они затеяли, была весьма рискованной, поскольку едва наши предки спустились с деревьев, как их на каждом шагу стала подстерегать смертельная угроза. Саванна к тому времени уже была населена животными, большинство которых были сильнее и быстрее людей.
Укрыться от хищников в кронах деревьев было теперь невозможно, и у наших предков оставался только один выход: использовать освободившиеся передние конечности. Отпала необходимость хвататься за ветви деревьев, и руки можно было использовать для других надобностей. Вполне вероятно, что развивающиеся руки использовались при транспортировке детенышей, когда стаи первых гоминидов последовали за мигрирующими ордами других видов на формировавшиеся равнины Африки. Возможно, наши предки использовали для самообороны камни и палки, как это делают шимпанзе, орудуя передними конечностями. Но в отличие от шимпанзе и других человекообразных обезьян, избранный нашими далекими предками способ выживания позволил им усовершенствовать контроль над телом, повысить тактильную чувствительность и в особенности развить правую руку. Способными выжить оказались только те стаи гоминидов, которые преуспели в развитии именно этих способностей. И наши далекие предки блестяще справились со стоявшей перед ними задачей: в двигательной и чувствительной зонах коры головного мозга Homo Sapiens’a кисть руки, особенно большой палец, была представлена феноменально детально.
Когда же передние конечности трансформировались в руки и кисти (с преимущественно развитой правой рукой и правой кистью), отпала необходимость в использовании челюстей для обороны. Естественный отбор не требовал более клыков, секторных малых коренных зубов и массивной челюсти, в которой могли бы разместиться эти зубы. Естественный отбор отдавал предпочтение большому головному мозгу, способному обеспечить праворукость и разум, и черепу, способному стать надежным вместилищем увеличившегося в объеме мозга. Так возник прямоходящий двуногий вид с объемистым головным мозгом, небольшой челюстью и отставленными большими пальцами — характерными особенностями, отличающими Homo Sapiens’a.
Развитие большого головного мозга повлекло за собой целую серию инноваций. Среди способностей, которые давали преимущества обитающим на суше двуногим, наиболее важной была способность кооперировать усилия с другими представителями вида при выполнении задач, имевших решающее значение для выживания. Те мутанты, которые обладали более высокой коммуникационной способностью по сравнению с другими особями, имели преимущество при естественном отборе. Когда же общественные индивиды распространились, передаваемый на генетическом уровне язык знаков человекообразных обезьян трансформировался в гибкую систему понятных для членов сообщества символов, характерную для человеческого языка. Социальное поведение Homo Sapiens’a освободилось от жесткой генетической запрограммированности и обрело способность адаптироваться к изменяющимся обстоятельствам. В неокортексе способность к праворукости и пользованию орудиями объединилась с недавно обретенными способностями к коммуникации и социализации. Наши предки эволюционировали от обитавших на суше человекообразных в вид, который не без преувеличения, но с определенными основаниями, стал считать себя «разумным.
С момента своего первого появления в Африке около 1 миллиона лет назад Homo Sapiens не претерпел сколько-нибудь существенных изменений. Но на протяжении большей части 5 миллионов лет, прошедших с тех пор, как Homo Sapiens впервые спустился с деревьев, его замечательные мануальные и когнитивные способности оставались невостребованными. Долгие тысячелетия небольшие стаи гоминидов влачили жалкое существование на грани смерти. Жизнь их была полна риска и опасностей. Выигрывать в азартной игре они начали медленно около 1,5 миллионов лет назад.
Неподалеку от Часованьи в Кении археологи обнаружили рядом с костями гоминидов обожженную глину и каменные орудия, изготовленные нашими древними предками. Глина сохранила следы обжига при температуре гораздо более высокой, чем та, которая обычно развивается при пожаре в зарослях кустарника. Невозможно утверждать с уверенностью, что глина была обожжена на костре, разведенном жившими около 1,5 миллионов лет назад гоминидами; мы не располагаем прямыми данными, которые бы неопровержимо свидетельствовали об этом: при сильных пожарах, когда начинает интенсивно тлеть ствол толстого дерева, могут развиваться высокие температуры. Но если мы вернемся на 500 тысяч лет назад, то получим уже неоспоримые свидетельства того, что гоминиды в эту эпоху владели огнем. Следы кострищ, оставленные нашими далекими предками полмиллиона лет назад, служат первыми признаками того, что Homo Sapiens, сделав ставку на интеллект, выиграл.
Овладение огнем было интеллектуальным ходом: огонь дал рассеянным стаям гоминидов небольшое, но решающее преимущество в борьбе за выживание. Огонь вызывает страх у всех существ: при соприкосновении пламя и тлеющие угли сжигают перья, мех, волосы и шкуру. Поскольку инстинктивная реакция любого существа — спасаться бегством, тот, кто владеет огнем, может использовать его для защиты. Огонь — важное средство обеспечения беспрерывного снабжения пищей; сырое мясо быстро портится, тогда как жареное остается съедобным. Поджаривая пищу, гоминиды получили возможность пережидать «неурожайные периоды» между охотой в плохую погоду; отпала необходимость жить только «из руки в рот».
Овладение огнем, непосредственно действующей и самой грозной из элементарных сил природы, происходило не одномоментно и не в одном месте. Homo erectus, наш прямой предок, по-видимому, в течение долгого времени разжигал костры на своих стоянках. Об этом ясно говорят находки археологов: следы разложенных человеком кострищ обнаружены в столь удаленных друг от друга точках земной поверхности, как Жоукоудян близ Пекина, Арагон на юге Франции и Вергешселеш в Венгрии. По-видимому, несколько групп гоминидов овладели огнем почти одновременно, не зная (а может быть, и зная) о достижениях другой группы.
Процесс овладения огнем должен был протекать медленно — по крайней мере по современным стандартам. Пожары периодически занимались от ударов молнии во всех тропических и субтропических экосистемах. Естественные пожары играют жизненно важную роль: они уничтожают мертвую органическую материю, возрождают плодородие почвы и создают благоприятные условия для роста новых растений. Homo erectus сталкивался с естественными пожарами на протяжении бессчетных тысячелетий и реагировал на огонь так же, как другие приматы и животные, — пускался наутек.
Но постепенно некоторые индивиды, не лишенные авантюристических наклонностей, стали возвращаться к обугленным останкам и копаться на пепелище. Не подлежит сомнению, что они находили останки различных животных, в том числе и такие, которые не сгорели полностью, а лишь обуглились. По-видимому, собственный опыт показал им, что такие останки могут быть съедены не только на пепелище, но и в становище, находившемся в нескольких днях пути от того места, где бушевал пожар.
Все больше и больше групп гоминидов в поисках пищи возвращались к пожарищам, чтобы запастись съедобными останками животных. Они были не единственными любителями жареного мяса: другие животные, в особенности человекообразные обезьяны, легко подражающие поведению других видов, и другие виды обезьян, следовали по пятам гоминидов. Но у гоминидов было одно преимущество: их тела имели сравнительно редкий волосяной покров, и летящие искры причиняли им меньше вреда, чем животным с густым мехом или более плотным волосяным покровом. Еще более важным преимуществом было прямохождение. Освобожденными от веса тела руками было удобнее исследовать содержимое слоя пепла и угля, чем передними конечностями четвероногих; удобнее было и бросать руками камни и палки в конкурентов.
Затем последовала целая серия открытий. Начать хотя бы с того, что, как заметили некоторые гоминиды, палку, горящую с одного конца, можно спокойно держать за другой, холодный конец. Такие пылающие с одного конца палки, как оказалось, были весьма эффективным оружием. И вскоре не отдельные гоминиды, а целые стаи стали с шумом размахивать горящими с одного конца палками, распугивая других животных. Другое открытие последовало чуть позже: подбрасывая в пламя свежие, не горящие палки, гоминиды стали получать новые факелы, которые можно было использовать в качестве оружия.
Поджигание с одного конца сухой палки ознаменовало решающий прорыв в той азартной (и опасной) игре, которую наш вид вел, сделав ставку на интеллект. Огонь в естественных условиях затухал по истечении некоторого времени, но его можно было поддерживать, подбрасывая в пламя все новые и новые палки. Наши далекие предки обнаружили, что, поджигая палки, можно не только отпугивать других животных, но и поддерживать огонь. А поскольку в природных условиях огонь встречается далеко не всегда (и периоды без огня могут быть весьма продолжительными), поддержание огня стало важным повседневным занятием.
Было сделано и третье открытие: оказалось, что огонь можно переносить. Горящую палку можно было взять и отнести, чтобы разжечь огонь в более удобном месте, например, у входа в пещеру или в самой пещере. С тех пор как было сделано это открытие, костры стали разводить у человеческих поселений и использовать для поджаривания добычи и отпугивания хищников. Имеются данные, свидетельствующие о том, что костры использовались гоминидами именно так, причем на протяжении поразительно долгих периодов времени. Например, в знаменитой пещере в Жоукоудяне огонь поддерживался с возможными перерывами на протяжении 230000 лет и был погашен, лишь когда провалился свод и из пещеры пришлось уйти.
В последующие столетия гоминиды обнаружили, что могут и сами добывать огонь, не дожидаясь счастливого случая, например, когда молния ударит в сухой кустарник и подожжет его. Добывание огня трением палочки о палочку или высеканием из камня и раздуванием тлеющей искры было замечательным изобретением разума гоминидов. Вместе с более ранними открытиями оно дало нашим предкам значительную власть над природой, гораздо большую, чем какому-либо другому существу. С этим изобретением наш вид вышел на торную дорогу к господству над всеми остальными видами. Людям не нужно было больше бороться за выживание в постоянном страхе перед более сильным видом: люди могли устраивать свои стойбища или поселения, защищать их и запасать впрок пищу. Греческий миф гласит, что Прометей похитил огонь у мстительного Зевса, который разгневался на людей, обхитривших его. Похищенная Прометеем искра, по преданию спрятанная в полом стебле сладкого укропа, возможно, ознаменовала собой величайший прорыв в истории человечества.
Обеспечив существование Homo Sapiens’а как биологического вида, выигрыши от ставки на интеллект стали поступать со все возрастающей частотой. Были заселены долины таких рек, как Нил, Тигр, Евфрат, Ганг и Хуанхэ. Огромное количество плодоносного ила, нанесенного могучими потоками, служило естественным удобрением, а происходившие периодически разливы рек — естественной системой ирригации. В ходе тысячелетий к регулярным урожаям дикорастущих растений добавились семена, высаженные на полюбившихся местах; со временем некоторые виды некогда диких растений были одомашнены. Примерно в то же время происходило одомашнивание некоторых видов животных. С началом неолита — прорыва, который с полным основанием может быть назван первой великой технологической «революцией», — кочевые племена гоминидов превратились в оседлых землепашцев.
Следующий этап развития уже относится к истории Homo Sapiens’а как главного хищника планеты Земля. Развитый интеллект позволил нам воспроизводиться во все большем масштабе и взять власть над природой (или по крайней мере вторгнуться в нее), как того требовало удовлетворение наших растущих потребностей и ненасытных аппетитов.
Вопрос
Мы научились разводить огонь и действовали в предположении, что всегда можем погасить его. Но обосновано ли такое предположение? Все силы, которые мы вызвали к существованию, — это огонь того или иного рода, а его пламя — динамические процессы в природе, которые мы катализируем в надежде, что в нужный момент сумеем их погасить. Мы пребываем в уверенности, что укротили и этот Прометеев огонь, что можем не только возжигать, но и гасить его. И все же иногда новый огонь, вспыхнув, выходит из-под нашего контроля. Иногда, подобно джинну, выпущенному из бутылки, он начинает жить своей жизнью. Оказавшись на воле, огонь действует непредвиденным и не согласующимся с нашими намерениями образом, не столько создавая жизнь и среду обитания, сколько разрушая их.
Именно так вела себя сила, которую мы выпустили на волю с изобретением пороха, и именно так ведет себя большинство современных технологий, основанных на использовании горючих ископаемых. Хиросима и Чернобыль научили нас, что джинн, выпущенный из атомного ядра, более могуществен и труднее поддается укрощению, чем все остальные джинны. Может оказаться, что роботы и компьютеры, равно как и мириады новых технологий автоматизации и средств связи, приручены нами далеко не так надежно, как нам кажется.
Все это должно дать нам пищу для размышлений. Когда около 5 миллионов лет назад линия Homo ответвилась от линии высших человекообразных обезьян, наш вид получил шанс. На карту было поставлено продолжение человеческого рода. Виду, наделенному разумом, не обязательно гарантирован эволюционный успех при воспроизведении и улучшении окружающей среды. Может приключиться какая-нибудь экологическая катастрофа, которая резко ухудшит состояние окружающей среды и поставит под угрозу существование вида. Если бы человеческий разум потерпел фиаско, то вполне возможно, что исчезновение нас как вида означало бы исчезновение всех высших форм жизни на Земле. Ставка на разум была самой крупной игрой, которую когда-либо вела биосфера.
И хотя миллионы лет исход игры оставался неясным, на протяжении «запротоколированной» истории человек получал выигрыш. И все же остается вопрос: не может ли сейчас эта история подойти к концу? Предположение об исчезновении нас как вида отнюдь не является надуманным — ведь мог бы где-нибудь в другом месте Вселенной исчезнуть разумный вид вскоре после того, как он занял доминирующее положение в своей системе? В конце концов, разум — лишь один из многих ответов, которые эволюция может предложить в великом танце мутации и естественного отбора, и не исключено, что в необъятных просторах Вселенной подобные вопросы уже ставились и решались.
Несмотря на это, все наши усилия установить связи с инопланетными цивилизациями закончились неудачей. В печати появлялись сообщения о высадке на Землю НЛО с инопланетянами на борту, но они не были подтверждены, и их достоверность вызывает серьезные сомнения. И хотя жизнь на многих планетах, связь с которыми в принципе может быть установлена с Земли, не исключена, нам пока не удалось установить контакта ни с одной внеземной цивилизацией. Возможно, причина состоит не в том, что наделенные разумом виды не существуют вне нашей планеты: даже если несколько разумных видов и возникали на просторах галактики, их существование могло и не длиться долго. А если большинство разумных видов обладают малым временем жизни, то наши шансы на установление связи с ними резко падают. Нам необходимо посылать сигналы с точными пространственно-временными координатами, чтобы получить ответный сигнал: стоит ошибиться на сотню-другую лет, и наши собратья по разуму уже не смогут нам ответить.
Независимо от того, существует или не существует разум в космосе, мы горды тем, что разумная жизнь существует на Земле. Но так ли это?
Ответ зависит от того, какое значение мы придаем слову «разум». Как стратегия в конкурентной борьбе за выживание, разум человеческого типа заведомо существует: за последние несколько тысяч лет он приносил немалые выигрыши человечеству. И все же затраты на человеческий разум непрестанно росли и теперь угрожают превысить приносимые им доходы. Если это произойдет, то наш вид превратится в планетарного паразита, который убивает своего хозяина, чьими соками он питается, — в своего рода раковую болезнь, разрушающую биосферу. Такой исход вряд ли можно назвать разумным.
Но возможен разум других типов, ведь в конце концов разум означает способность делать взвешенный выбор. В мире, столь сложном и взаимозависимом, сделать подобный выбор нелегко. Для этого требуется мыслить и действовать в глобальном контексте, с долговременным горизонтом. Видение на коротком расстоянии в темном туннеле может оказаться роковым, — подсказываемый таким видением выбор таит в себе тяжкие последствия для индивида и катастрофичен для биосферы, в которой происходила эволюция вида.
Выдержит ли наш разум уготованное ему испытание — окажется ли сделанный нами выбор правильным? Это главный вопрос: от ответа на него зависит наше коллективное выживание. Когда в каменном веке огонь выходил из-под контроля, выгорала часть леса или саванны и приходилось переносить стойбища на новые места, бродячие стаи Homo Sapiens’ов перебирались на еще не освоенные территории. В нашу эпоху совет «Отправляйтесь на Запад, молодой человек» был вполне осуществим, ибо на Западе (Соединенных Штатов Америки) еще можно было найти нетронутые земли. Ныне ситуация иная. Ничем не сковываемые силы человечества не оставляют нетронутой ни одну область на земном шаре, и если эти силы выйдут из-под контроля, нам просто некуда будет деться. Сделай мы ошибочный выбор, нам останется лишь использовать наши мега-технологии, чтобы вырыть для себя мегамогилу.
Далекие горизонты
А что если своевременные сдвиги в ценностях и мотивациях смогут создать слабую, но существенную флуктуацию, которая сместит наши переживающие бифуркацию общества на ветвь гуманистической эволюции? Что если наши эволюционирующие системы будут переведены в стабильное и гуманистическое состояние? Иначе говоря, что если воплотить на практике «Третью стратегию» эволюционного гуманизма? От долговременных перспектив, которые она сулит, дух захватывает! Вместо того, чтобы деэволюционировать до полного исчезновения, Homo Sapiens мог бы эволюционировать и жить процветая!
Важный эволюционный скачок могло бы сделать уже следующее поколение. Нельзя не отметить следующий любопытный факт: если говорить о численности населения, то мы приближаемся к магическому числу: 1010 — десяти миллиардам человек. Столько людей будет жить на нашей планете к тому времени, когда кривая роста народонаселения, наконец, достигнет насыщения.
Число 1010 тесно связано с важными эволюционными скачками. Как отметил Питер Рассел, чтобы образовалась первичная живая клетка, необходимо около 10 миллиардов атомов. Около 10 миллиардов клеток необходимо, чтобы создать автономный многоклеточный организм. Около 10 миллиардов нейронов необходимо для возникновения сознания в неокортексе человеческого головного мозга. Если жизнь возникает из физических и химических процессов при достижении порога в 1010 атомов, если сознание возникает у живых существ, когда число нейронов достигает 1010, то нечто существенно важное может возникнуть, когда столько же разумных существ собираются в живые сообщества.
Разумеется, сами числа — не более чем количественный параметр, а отнюдь не полный набор условий, который должен быть выполнен для того, чтобы эволюционный прорыв действительно состоялся. Аморфная масса из 10 миллиардов атомов способна превратиться в живую клетку ничуть не больше, чем масса из 10 миллиардов клеток — в живой организм или 10 миллиардов нейронов — в наделенный сознанием мозг. Между компонентами должны быть точные связи, циклы внутри циклов, обратные связи внутри обратных связей и согласованная интеграция на уровне целого. Только тогда в системе атомов и молекул может возникнуть клеточная жизнь, а в системе живых клеток — автономная жизнь и сознание.
Каковы шансы, что циклы и обратные связи того самого типа, которые в природе обеспечивают скачок на новый эволюционный уровень, могут возникнуть и в человеческом населении нашей планеты? Шансы представляются весьма высокими. Как мы уже знаем, количественный, экстенсивный рост достиг насыщения и, вполне возможно, сменился качественным, интенсивным развитием, то есть структурализацией и комплексификацией. В конце концов в наши социальные системы включается не только все больше людей, энергии и вещества, но и все больше информации, а информация всегда приводит к возникновению структур, а не только агломератов, в той системе, в которую она втекает. Если бы этот процесс был непрерывным, то тот тип ритма развития, который характерен для «роста зародыша в утробе матери, воспроизводился бы на уровне всего населения Земли.
Возникновение и развитие головного мозга у зародыша замечательно и по ювелирной точности, и по тем аналогиям, которое оно дает для правдоподобной версии роста народонаселения мира. Рост клеток головного мозга ускоряется, начиная с восьмой недели беременности, а к десятой неделе приобретает взрывной характер. Каждую минуту число клеток головного мозга плода увеличивается на миллион. Затем, к тринадцатой неделе, экстенсивный рост прекращается, и развитие устремляется внутрь. Вместо увеличения числа клеток в мозгу зародыша происходит увеличение числа связей. За несколько месяцев в точности воспроизводится сложная структура головного мозга Homo Sapiens’a — продукт почти 50 миллионов лет эволюции. Возможность того, что аналогичный процесс может происходить и на уровне народонаселения Земли, не следует так просто сбрасывать со счетов. Современные люди уже организованы в сложные структуры — в города и деревни, общественные институты и частные предприятия, социальные клубы и культурные организации, а также в мириады других групп. Эти структуры соединены между собой множеством циклов и обратных связей, и число этих взаимосвязей продолжает расти экспоненциально.
Письменность известна на протяжении 10 тысяч лет, книгопечатание — на протяжении 500 лет. Телеграф и телефон появились в XIX веке, а радиосвязь — в XX столетии. Широкое распространение компьютеров для информационных целей и коммуникации берет начало лишь с 60-х годов XX века, а телефакс относится к еще более поздним достижениям. В настоящее время число компьютерных сетей удваивается каждые несколько лет, а радио, телевидение, телекс и факс проникли во все уголки нашей планеты. Внутренние связи народонаселения развиваются и экстенсивно, и интенсивно. Наблюдения за быстрым ростом связей между природными компонентами, достигшими критической массы, естественно приводят к вопросу о том, не возникнет ли в недалеком будущем некое новое эволюционное явление. Не будет ли исход его в какой-то мере напоминать мировой супермозг, в котором отдельные индивиды играют всего лишь роль передающих информацию нейронов? Такая возможность, представленная Питером Расселом в увлекательной, но и пугающей концепции «глобального мозга», а в более религиозной форме — в идее Тейяра де Шардена о ноосферной эволюции, — не просто один из потенциально возможных вариантов выбора. Такая возможность непременно реализуется, если мы позволим циклам и обратным связям замкнуться и включить нас в единую цепь ценой нашей индивидуальной свободы и автономии. Но это означало бы, что вступил в силу иерархический эволюционный сценарий. К счастью, мы достигли достаточно высокой ступени развития и наш мозг обладает способностью мыслить на достаточно высоком уровне для того, чтобы мы могли отказаться от порабощающих личность сценариев развития общества и выбрать голархический путь, когда усилия отдельных индивидов и сообществ соединяются по взаимному согласию в гибкие социальные системы. Ведь мы вступаем в Век Водолея, с присущим ему соучастием, гуманностью и дисциплиной, который по уверениям астрологов будет длиться более двух тысяч лет.
Далекие горизонты будущего подчеркивают альтернативы, которые открываются перед человечеством, Регресс до полного исчезновения человечества или эволюция до нового плато существования; ставки всегда были высоки, но они никогда не были так высоки, как сейчас. Ответственность также никогда не была столь высокой. Осознав эволюцию, мы должны теперь сделать ее сознательной. Если мы того захотим, то следующий шаг в развитии человеческого общества можно совершить сознательно. В последнее десятилетие XX века у нас есть средства и возможность планировать нашу судьбу.
Эрвин Ласло. Век бифуркации. Приложение. Основные понятия теории эволюционных систем
Новые теории эволюционирующих систем берут начало из общей теории систем Людвига фон Берталанфи, кибернетики Норберта Винера и теории информации Клода Шеннона. Основные понятия и теории развивались в различных областях естественных и социальных наук, а также в философии. Они достигли зрелости с появлением неравновесной термодинамики Ильи Пригожина и последних успехов математического моделирования хаоса и преобразований в динамических системах.
Все эти, науки позволяют нам по-новому взглянуть на природу реальности. Согласно новой точке зрения, человек и общество в этом мире являются не чужаками, а неотъемлемыми частями огромной волны эволюции, начавшейся 18 миллиардов лет назад с большого взрыва и теперь затронувшей явления жизни, культуры и сознания. Новые науки описывают динамические особенности этой эволюции и ее основные этапы. Если вообще существует прочный базис для достижения следующей ступени в эволюции человечества и для того, чтобы попытаться направить эволюцию в наших общих интересах, то новые науки, несомненно, находятся в особенно благоприятном положении для того, чтобы сделать это. Знакомство с их ключевыми понятиями составляет неотъемлемую часть грамотности в наше время. (Более подробно эти понятия изложены в книге: Erwin Laszlo. Evolution: The Grand Synthesis. — Boston and London: New Science Library, Shambhala Publications, 1987. — Прим. ред.)
Основные понятия
Материя во Вселенной кластеризуется во все более и более сложные образования, части которых действуют согласованно (когерентно) и разделяют общую судьбу. Такие образования называются системами.
Не все существующие в мире системы одинаковы, хотя имеются общие категории, не укладывающиеся в рамки традиционного деления естественных и социальных наук.
Новые категории относятся не к «физической системе», «химической системе», «биологической системе» и так далее, а к состояниям равновесным, близким или далеким от равновесия (слабо или сильно неравновесным). Сильно неравновесные системы стали известны недавно; тем не менее они составляют категорию систем, которые развиваются в физическом и химическом, равно как и в биологическом и человеческом мире. Что же касается двух остальных категорий систем — равновесных и слабо неравновесных, то они известны уже более ста лет.
В равновесных системах потоки энергии и вещества выровняли различия в температуре и концентрации; элементы системы неупорядочены и случайно перемешаны, а сама система однородна и динамически инертна. В слабо неравновесных системах, находящихся вблизи равновесия, но не в своем равновесии, существуют небольшие различия в температуре и концентрации; внутренняя структура не хаотична, и сами системы не инертны. Такие системы стремятся сместиться к равновесию, как только устраняются связи, удерживавшие их в неравновесном состоянии. Слабо неравновесные системы достигают равновесия, когда прямые и обратные реакции статистически компенсируют друг друга, в результате чего различия концентрации в целом исчезают (это явление известно как закон действия масс, или закон Гульдберга-Вааге).
Исчезновение различий концентрации означает химическое равновесие, а достижение равномерной температуры означает тепловое равновесие. В то время как в неравновесном состоянии системы выполняют работу и, следовательно, производят энтропию, в равновесном состоянии они не выполняют работы и производство энтропии прекращается. В состоянии равновесия производство энтропии, силы и потоки (скорости необратимых процессов) равны нулю, в то время как вблизи равновесия производство энтропии мало, силы слабы, а потоки являются линейными функциями от сил. Таким образом, состояние вблизи равновесия есть состояние линейного неравновесия, описываемое линейной термодинамикой в терминах статистически предсказуемой тенденции к максимальной диссипации свободной энергии и наивысшему уровню энтропии. Системы в слабо нелинейном состоянии в пределе переходят в состояние, характеризуемое наименьшей свободной энергией и максимальной энтропией, совместимыми, с граничными условиями (при любых начальных условиях).
К третьей возможной категории относятся сильно неравновесные системы, далекие от теплового и химического равновесия. Такие системы нелинейны и проходят через неопределенные фазы. Они не стремятся к минимальной свободной энергии и максимальной удельной энтропии, но усиливают определенные флуктуации и переходят в новый динамический режим, который радикально отличается от стационарных равновесных или слабо неравновесных состояний.
На первый взгляд кажется, будто системы в сильно неравновесном состоянии противоречат знаменитому второму началу термодинамики.
Действительно, как могут системы повышать свой уровень сложности и организации и увеличивать свою энергию? Второе начало термодинамики утверждает, что организация и структура любой изолированной системы стремятся исчезнуть, уступая место однородности и случайности. Современные ученые знают, что развивающиеся системы не изолированы и поэтому второе начало термодинамики не полностью описывает происходящие в них процессы, точнее то, что происходит между системами и окружающей их средой. Системы, относящиеся к третьей категории, всегда с необходимостью являются открытыми системами, поэтому изменение энтропии в них не определяется однозначно необратимыми внутренними процессами.
Протекающие в таких системах внутренние процессы не подчиняются второму началу термодинамики: свободная энергия, единожды затраченная, не способна более выполнять работу. Но энергия, необходимая для совершения работы, может быть «импортирована» открытыми системами из окружающей среды: через границы открытой системы может осуществляться перенос свободной энергии (или отрицательной энтропии). (Изменение энтропии системы определяется известным уравнением Пригожина dS diS + d «S». Здесь dS — полное изменение энтропии в системе, dtS — изменение энтропии, обусловленное необратимыми процессами внутри системы, deS — энтропия, перенесенная через границы системы. В изолированной системе величина dS всегда положительна, поскольку однозначно определяется величиной diS, которая с необходимостью возрастает, когда система выполняет работу. Что же касается величины dS, то она может компенсировать величину diS и даже превосходить ее. Поэтому в открытой системе величина dS не обязательно должна быть положительной; она может быть равна нулю или отрицательной. Открытая система может находиться в стационарном состоянии (dS-О) или расти и усложняться (dS-О — «О», то есть энтропия, производимая необратимыми процессами в системе, смешается в сторону окружающей среды). Изменение энтропии в такой системе определяется уравнением de S-diS. — Прим. авт.)
Когда две величины — свободная энергия внутри системы и свободная энергия, поступающая через границы системы из окружающей среды, — находятся в равновесии и компенсируют друг друга, система переходит в неизменное (то есть стационарное) состояние. Поскольку в динамической среде два члена уравнения Пригожина редко компенсируют Друг друга в течение сколько-нибудь продолжительного времени, системы в реальном мире в лучшем случае «метастабильны»: они имеют тенденцию флуктуировать относительно своих стационарных состояний, а не неподвижно пребывать в этих состояниях без всяких вариаций.
Эти основные понятия были применены в ряде областей науки, апробированы и разработаны различными способами. Исследования, непосредственно относящиеся к эволюционным понятиям, можно грубо разделить на две категории: эмпирические исследования, опирающиеся на наблюдение и эксперимент, и теоретические исследования, проводимые на формальных — математических — моделях поведения систем.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|