Сделай Сам Свою Работу на 5

при уровне значимости 0,05





Герела Т.А.

 

СТАТИСТИКА

Методические рекомендации по выполнению практических работ
по дисциплине для студентов среднего профессионального образования

Санкт-Петербург, 2014

Организация-разработчик: Санкт-Петербургское государственное бюджетное профессиональное образовательное учреждение «Колледж «Императорский Александровский лицей»

 

 

Методические рекомендации для выполнения практических работ по дисциплине «Статистика» рассмотрены методическим советом колледжа и рекомендованы для использования в учебном процессе – протокол № 1 от 28.08.2014.

 

 

Методист колледжа А.Ф. Жмайло


 

Часть 1. Теоретическая статистика

Тема 1. Абсолютные и относительные статистические величины

 

Методические указания по теме

Задача 1. Расход топлива на производственные нужды предприятия характеризуется в отчетном периоде следующими данными:

Вид топлива Теплотворная способность, МДж/кГ Расход, т
по плану фактически
Дизельное топливо 41,9
Мазут 40,1
Уголь 26,4

Определить общее количество потребленного условного топлива (1 т.у.т. = 29,3 МДж/кГ) по плану и фактически, а также процент выполнения плана по общему расходу топлива.



Решение. Учитывая стандартную теплотворную способность 29,3 МДж/кГ, определяем количество потребленного условного топлива каждого вида по плану (X’1i) и фактически (X1i):

– дизельное топливо: X’1дт = 41,9/29,3*1000 = 1430,034 т.у.т.

дизельное топливо: X1дт = 41,9/29,3*1050 = 1501,536 т.у.т.;

– мазут: X’= 40,1/29,3*750 = 1026,451 т.у.т.

мазут: X= 40,1/29,3*730 = 999,078 т.у.т.;

– уголь: X’= 26,4/29,3*500 = 450,512 т.у.т.

уголь: X= 26,4/29,3*555 = 500,068 т.у.т.

Суммируя количество потребленного условного топлива каждого вида, получим общее количество потребленного условного топлива:

– по плану X’1= ∑X’1i= 2906,997 т.у.т.;

– фактически X1= ∑X1i= 3000,682 т.у.т.

Для определения процента выполнения плана необходимо рассчитать индекс выполнения плана, то есть отношение значений по факту и плану отчетного периода:

, (1)

Применяя формулу (1), имеем: = 3000,682/2906,997 = 1,032, то есть план по общему расходу топлива перевыполнен на 3,2%.



Задача 2. Рассчитать индекс и темп изменения, если в марте произведено продукции 130 тонн, а в феврале 100 тонн.

Решение. Индекс изменения (динамики) характеризует изменение какого-либо явления во времени. Он представляет собой отношение значений одной и той же абсолютной величины в разные периоды времени. Данный индекс определяется по формуле (2):

, (2)

где подиндексы означают: 1 — отчетный или анализируемый период, 0 — прошлый или базисный период.

Критериальным значением индекса динамики (темпа роста) служит единица, то есть если >1, то имеет место рост явления во времени; если =1 – стабильность; если <1 – наблюдается спад явления. Применяя формулу (2), имеем: = 130/100 = 1,3 (или 130%) > 1 – рост объема произведенной продукции.

Темп изменения (прироста) определяется по формуле (3):

. (3)

Применяя формулу (3), имеем: Т = 1,3 – 1 = 0,3 (или 30%), то есть объем произведенной продукции вырос в марте по сравнению с февралем на 30%.

Задача 3. Рассчитать индексы планового задания, выполнения плана и динамики, если выпуск продукции в отчетном году составил 100 млн. рублей, на следующий год планировалось 140 млн. рублей, а фактически получено 112 млн. рублей.

Решение. Индекс планового задания – это отношение значений одной и той же абсолютной величины по плану анализируемого периода и по факту базисного. Он определяется по формуле (4):

, (4)

где X’1 — план анализируемого периода; X0 — факт базисного периода.

Применяя формулу (4) имеем: = 140/100 = 1,4 (или 140%), то есть на следующий год планировалось выпустить продукции в размере 140% от объема предыдущего года.



 

Индекс выполнения плана определим, применяя формулу (1): = 112/140 = 0,8 (или 80%), то есть план по увеличению выпуска продукции выполнили лишь на 80% или недовыполнили на 20%.

Индекс динамики можно определить по формуле (2) или перемножая индексы планового задания и выполнения плана, то есть = 1,12.

Задача 4. Суммарные денежные доходы россиян в 2005 г. составили 13522,5 млрд. руб., из которых 8766,7 млрд. руб. составила оплата труда, 1748,4 млрд. руб. – социальные выплаты, 1541,7 млрд. руб. – доход от предпринимательской деятельности, 1201,5 млрд. руб. – доходы от собственности, остальное – прочие доходы. Рассчитать относительные величины структуры и координации, приняв за основу оплату труда. Построить секторную (круговую) диаграмму структуры доходов.

Решение. Индекс структуры (доля) – это отношение какой-либо части величины (совокупности) ко всему ее значению. Он определяется по формуле (5):

(5)

Применяя формулу (5) и округляя значения до 3-х знаков после запятой, имеем:

– доля оплаты труда dОТ = 8766,7/13522,5 = 0,648 или 64,8%;

– доля социальных выплат dСВ =1748,4/13522,5 = 0,129 или 12,9%;

– доля доходов от предпринимательской деятельности dПД =1541,7/13522,5 = 0,114 или 11,4%;

– доля доходов от собственности dДС =1201,5/13522,5 = 0,089 или 8,9%.

Долю прочих доходов найдем, используя формулу (6), согласно которой сумма всех долей равна единице:

. (6)

Таким образом, доля прочих доходов dпроч = 1 – 0,648 – 0,129 – 0,114 – 0,089 = 0,020 или 2,0%.

 

Индекс координации – это отношение какой-либо части величины к другой ее части, принятой за основу (базу сравнения). Он определяется по формуле (7):

. (7)

Применяя формулу (7) и принимая за основу оплату труда, имеем:

– индекс координации социальных выплат = 1748,4/8766,7 ≈ 0,129/0,648 = 0,199;

– индекс координации предпринимательского дохода =1541,7/8766,7 ≈ 0,114/0,648 = 0,176;

– индекс координации доходов от собственности = 1201,5/8766,7 ≈ 0,089/0,648 = 0,137;

– индекс координации прочих доходов ≈ 0,02/0,648 = 0,031.

Таким образом, социальные выплаты составляют 19,9% от оплаты труда, предпринимательский доход – 17,6%, доходы от собственности – 13,7%, а прочие доходы – 3,1%.

Задача 5.Запасы воды в озере Байкал составляют 23000 км3, а в Ладожском озере 911 км3. Рассчитать относительные величины сравнения запасов воды этих озер.

Решение. Индекс сравнения – это отношение значений одной и той же величины в одном периоде или моменте времени, но для разных объектов или территорий. Он определяется по формуле (8):

, (8)

где А, Б — признаки сравниваемых объектов или территорий.

Применяя формулу (8) и принимая за объекты А и Б, соответственно, озера Байкал и Ладожское, найдем индекс сравнения: = 23000/911 = 25,25, то есть запасов воды в озере Байкал в 25,25 раза больше, чем в Ладожском озере.

Меняя базу сравнения, найдем индекс сравнения Ладожского озера с Байкалом по той же формуле: = 911/23000 = 0,0396 или 3,96%, то есть запасы воды в Ладожском озере составляют 3,96% запасов воды в озере Байкал.

 

Задача 6.Рассчитать относительную величину интенсивности валового внутреннего продукта (ВВП) в сумме 1416,1 млрд. $ на душу населения в России в 2004 году при численности населения в 144,2 млн. человек.

Решение. Показатель интенсивности – это отношение значений двух разнородных абсолютных величин для одного периода времени и одной территории или объекта. Он определяется по формуле (9):

. (9)

Применяя формулу (9) имеем: iИН = 1416,1/0,1442 = 9820,39 $/чел в год.

Самостоятельные задания по теме

Вариант 1. Определить общее производство моющих средств в условных тоннах (условная жирность 40%) по плану и фактически, а также процент выполнения плана по следующим данным:

Вид продукта Жирность, % Физическая масса, т
по плану фактически
Мыло хозяйственное
Мыло туалетное
Стиральный порошок

Вариант 2. По данным о численности жителей двух крупнейших городов России (тыс. чел) определить индексы сравнения и динамики.

Город Год
Москва
Санкт-Петербург

Вариант 3.

1. По плану на 2012 год намечалось увеличение товарооборота на 3%. В 2012 году плановое задание перевыполнили на 600 млн. руб. или на 2,5%. Определить фактический прирост товарооборота (в млн. руб.) в 2012 году по сравнению с 2011 годом.

1. По данным о товарообороте из предыдущей задачи, состоящего из реализации собственной продукции и продажи покупных товаров, определить относительные величины координации и структуры собственной и покупной продукции в 2011 и 2012 годах, если известно, что доля собственной продукции в 2011 году составила 65%, а в 2012 году она увеличилась на 10%.

Вариант 4. Жилищный фонд и численность населения России следующие (на начало года):

Год
Весь жилищный фонд, млн. м2
Численность населения, млн. чел. 145,6 145,0 144,2 143,5

Охарактеризовать изменение обеспеченности населения жилой площадью с помощью относительных величин динамики и координации.

Вариант 5.

1. В России в 2004 численность женщин составила 77144,3 тыс. чел, а мужчин – 67023,9 тыс. чел. Рассчитать относительные величины структуры и координации.

2. По плану объем продукции в отчетном году должен возрасти по сравнению с прошлым годом на 2,5%. План выпуска продукции перевыполнен на 3,0%. Определить фактический выпуск продукции в отчетном году, если известно, что объем продукции в прошлом году составил 25,3 млн. руб.

Вариант 6. Определить общий объем фактически выпущенной продукции по следующим данным по трем филиалам предприятия, выпускающих однородную продукцию:

Номер филиала Планируемый объем выпуска продукции, млн. руб. Выполнение намеченного плана, %

Вариант 7. По промышленному предприятию за отчетный год имеются следующие данные о выпуске продукции:

Наименование продукции План на I квартал, тыс. т Фактический выпуск, тыс. т Отпускная цена за 1 т, у.е.
январь февраль март
Сталь арматурная
Прокат листовой

Определить процент выполнения квартального плана: 1) по выпуску каждого виа продукции; 2) в целом по выпуску всей продукции.

Вариант 8. Определить процент выполнения плана по продажам условных школьных тетрадей (1 у.ш.т. – 12 листов) по каждому виду тетрадей и в целом по магазину по следующим данным:

Вид тетради Цена, руб./шт. Объем продаж, тыс. шт.
по плану фактически
Тетрадь общая 90 листов
Тетрадь общая 48 листов
Тетрадь общая 16 листов

Вариант 9. В России на начало года численность населения составила 144,2 млн. чел., в течение года: родилось 1,46 млн. чел., умерло – 2,3 млн. чел., мигрировало из других государств 2,09 млн. чел., мигрировало за границу – 1,98 млн. чел. Охарактеризовать изменение численности населения в году с помощью относительных величин.

Вариант 10. Определить общий объем фактически выпущенной условной консервной продукции (1 у.к.б. = 0,33 л) по следующим данным:

Вид продукции Планируемый объем выпуска продукции, тыс. шт. Выполнение плана, %
Томатная паста 1 л
Томатная паста 0,5 л
Томатная паста 0,2 л

Тема 2. Средние величины и показатели вариации

 

Методические указания по теме

Задача 1. Имеются следующие данные о возрастном составе студентов группы заочного отделения ВУЗа (лет): 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 22; 23; 23; 24; 25; 25; 25; 26; 27; 29.

Для анализа распределения студентов по возрасту требуется: 1) построить интервальный ряд распределения и его график; 2) рассчитать модальный, медианный и средний возраст, установить его типичность с помощью коэффициентов вариации; 3) проверить распределение на нормальность с помощью коэффициентов асимметрии и эксцесса.

Решение. Для построения интервального ряда из дискретного используется формула Стерджесса, с помощью которой определяется оптимальное количество интервалов (n):

n=1+3,322lgN, (10)

где N – число величин в дискретном ряде.

В нашей задаче n = 1 + 3,322lg25 = 1 + 3,322*1,398 = 5,64. Так как число интервалов не может быть дробным, то округлим его до ближайшего целого числа, т.е. до 6.

После определения оптимального количества интервалов определяем размах интервала по формуле:

h=H/n, (11)

где H – размах вариации, определяемый по формуле (12).

H=Хмах–Хmin, (12)

где Xмax и Xmin — максимальное и минимальное значения в совокупности.

В нашей задаче h = (29 – 19)/6 = 1,67.

Интервальная группировка данных приведена в первом столбце таблицы 1, которая содержит также алгоритм и промежуточные расчеты.

 


 

Таблица 1. Вспомогательные расчеты для решения задачи

Xi , лет fi ХИ XИfi ХИ- И- )2 И- )2fi И- )3 fi И- )4 fi
до 20,67 19,833 237,996 -2,134 25,602 4,552 54,623 -116,539 248,638
20,67-22,33 21,5 86,000 -0,467 1,866 0,218 0,871 -0,406 0,189
22,33-24 23,167 69,501 1,200 3,601 1,441 4,323 5,190 6,231
24-25,67 24,833 74,499 2,866 8,599 8,217 24,650 70,659 202,543
25,67-27,33 26,5 53,000 4,533 9,067 20,552 41,105 186,348 844,806
более 27,33 28,167 28,167 6,200 6,200 38,446 38,446 238,383 1478,091
Итого 549,163 54,937 164,018 383,636 2780,498

 

Мода – это наиболее часто повторяющееся значение признака. Для интервального ряда с равными интервалами величина моды определяется по формуле (13):

, (13)

где ХMo – нижнее значение модального интервала; fMo – число наблюдений или объем взвешивающего признака (вес признака) в модальном интервале; fMo-1 – то же для интервала, предшествующего модальному; fMo+1 – то же для интервала, следующего за модальным; h – величина интервала изменения признака в группах.

В нашей задаче чаще всего повторяется (12 раз) первый интервал возраста (до 20,67), значит, это и есть модальный интервал. Используя формулу (13), определяем точное значение модального возраста:

Мо = 19 + 1,667*(12-0)/(2*12-4-0) = 20 (лет).

Медиана – это такое значение признака, которое приходится на середину ранжированного ряда. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака больше медианы, другая – меньше медианы. Для интервального ряда с равными интервалами величина медианы определяется так:

, (14)

где XMe – нижняя граница медианного интервала; h – его величина (размах); – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала; fMe – число наблюдений или объем взвешивающего признака в медианном интервале.

В нашей задаче второй интервал возраста (от 20,67 до 22,33) является медианным, так как на него приходится середина ряда распределения возраста. Используя формулу (14), определяем точное значение медианного возраста:

Ме = 20,67 + 1,667*(12,5-12)/4 = 20,878 (года).

Средняя величина – это обобщающий показатель совокупности, характеризующий уровень изучаемого явления или процесса. Средние величины могут быть простыми и взвешенными. Простая средняя рассчитывается при наличии двух и более статистических величин, расположенных в произвольном (не сгруппированном) порядке, по общей формуле (15). Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием общей формулы (16).

= ; (15) = .(16)

При этом обозначено: Xi – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят виды средних величин. Используя формулы (15) и (16) при разных показателях степени m, получаем частные формулы каждого вида (см. таблицу 2).

Таблица 2. Виды степенных средних и их применение

m Название средней Формула расчета средней Когда применяется
простая взвешенная
Арифметическая = (17) = (18) Чаще всего, кроме тех случаев, когда должны применяться другие виды средних
–1 Гармоническая ГМ = (19) ГМ = (20) Для осреднения величин с дробной размерностью при наличии дополнительных данных по числителю дробной размерности
Геометрическая (21) (22) Для осреднения цепных индексов динамики
Квадратическая = (23) = (24) Для осреднения вариации признака (расчет средних отклонений)
Кубическая = (25) = (26) Для расчета индексов нищеты населения
Хронологическая (27) (28) Для осреднения моментных статистических величин

Выбор вида формулы средней величины зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять. Показатель степени m в общей формуле средней величины оказывает существенное влияние на значение средней величины: по мере увеличения степени возрастает и средняя величина (правило мажорантности средних величин), то есть < < < < . Так, если , то , а если , то .

В нашей задаче, применяя формулу (18) и подставляя вместо середины интервалов возраста ХИ, определяем средний возраст студентов: = 549,163/25 = 21,967 (года). Теперь осталось определить типичность или нетипичность найденной средней величины. Это осуществляется с помощью расчета показателей вариации. Чем ближе они к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности. При этом критериальным значением коэффициента вариации служит 1/3.

Коэффициенты вариации рассчитываются как отношение среднего отклонения к средней величине. Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации.

Среднее линейное отклонение определяется по формулам (29) и (30):

простое; (29) – взвешенное. (30)

Среднее квадратическое отклонение определяется как корень квадратный из дисперсии, то есть по формуле (31):

. (31)

Дисперсия определяется по формулам (32) или (33):

простая; (32) взвешенная. (33)

В нашей задаче, применяя формулу (30), определим ее числитель и внесем в расчетную таблицу. В итоге получим среднее линейное отклонение: Л = 54,937/25 = 2,198 (года). Разделив это значение на средний возраст, получим линейный коэффициент вариации: = 2,198/21,967 = 0,100. По значению этого коэффициента для рассмотренной группы студентов делаем вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,100 < 0,333).

Применяя формулу (33), получим в итоге дисперсию: Д = 164,018/25 = 6,561. Извлечем из этого числа корень и получим в результате среднее квадратическое отклонение: = = 2,561 (года).Разделив это значение на средний возраст, получим квадратический коэффициент вариации: = 2,561/21,967 = 0,117. По значению этого коэффициента для рассмотренной группы студентов можно сделать вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,117 < 0,333).

В качестве показателей асимметрии используются: коэффициент асимметрии – нормированный момент третьего порядка (34) и коэффициент асимметрии Пирсона (35):

,(34) .(35)

Если значение коэффициента асимметрии положительно, то в ряду преобладают варианты, которые больше средней (правосторонняя скошенность), если отрицательно – левосторонняя скошенность. Если коэффициент асимметрии равен 0, то вариационный ряд симметричен.

В нашей задаче = =383,636/25 = 15,345; =2,5613= 16,797; =15,345/16,797 = 0,914 > 0, значит, распределение студентов по росту с правосторонней асимметрией. Это подтверждает и значение коэффициента асимметрии Пирсона: As = (21,967-20)/2,561 = 0,768.

Для характеристики крутизны распределения используется центральный момент 4-го порядка:

= .(36)

Для образования безразмерной характеристики определяется нормированный момент 4-го порядка , который и характеризует крутизну (заостренность) графика распределения. При измерении асимметрии эталоном служит нормальное (симметричное) распределение, для которого =3. Поэтому для оценки крутизны данного распределения в сравнении с нормальным вычисляется эксцесс распределения (37):

.(37)

Для приближенного определения эксцесса может быть использована формула Линдберга (38):

,(38)

где – доля количества вариант, лежащих в интервале, равном половине (в ту и другую сторону от средней величины).

В нашей задаче числитель центрального момента 4-го порядка рассчитан в последнем столбце расчетной таблицы. В итоге по формуле (37) имеем: Ex = (2780,498/25)/2,5614–3 = 111,220/43,017–3 = -0,415. Так как Ex<0, то распределение низковершинное. Это подтверждает и приблизительный расчет по формуле (38): в интервале 21,967 0,5*2,561, то есть от 20,687 до 23,248 находится примерно 21,4% студентов. Таким образом, Ex = 0,214 – 0,3829 = –0,169.

Самостоятельные задания по теме

По имеющимся в следующей таблице данным по группе из 20 студентов заочного отделения необходимо:

1) построить интервальный ряд распределения признака и его график;

2) рассчитать модальное, медианное и среднее значение, установить его типичность с помощью коэффициентов вариации;

 

№ п/п Вариант
Рост, см Вес, кг Доход, у.е./мес. Численн. Тет-радь, листов Воз-раст, лет Соот-ношение «рост/вес» Стаж работы, мес. Кол-во друзей, чел. Время К-ной час.
3,533 8,5
2,623 6,2
2,875 6,8
3,375 12,0
3,000 7,5
2,828 10,0
3,255 7,2
2,726 4,2
2,429 3,5
2,361 9,5
2,342 7,8
2,672 8,0
2,356 6,0
2,559 4,8
2,173 8,6
2,095 10,0
2,342 4,5
2,011 12,5
2,691 10,5
2,021 6,5

Тема 3. Выборочное наблюдение

Методические указания по теме

Задача 1. На предприятии в порядке случайной бесповторной выборки было опрошено 100 рабочих из 1000 и получены следующие данные об их доходе за месяц:

Доход, у.е. до 300 300-500 500-700 700-1000 более 1000
Число рабочих

С вероятностью 0,950 определить:

1) среднемесячный размер дохода работников данного предприятия;

2) долю рабочих предприятия, имеющих месячный доход более 700 у.е.;

3) необходимую численность выборки при определении среднемесячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е.;

4) необходимую численность выборки при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%.

Решение. Выборочный метод (выборка) используется, когда применение сплошного наблюдения физически невозможно из-за огромного массива данных или экономической нецелесообразности. Учитывая, что на основе выборочного обследования нельзя точно оценить изучаемый параметр (например, среднее значение – или долю какого-то признака – р) генеральной совокупности, необходимо найти пределы, в которых он находится. Для этого необходимо определить изучаемый параметр по данным выборки (выборочную среднюю – и/или выборочную долю – w) и его дисперсию (Дв). Для этого построим вспомогательную таблицу 3.

Таблица 3. Вспомогательные расчеты для решения задачи

Xi fi ХИ XИfi И - )2 И - )2fi
до 300
300 - 500
500 - 700
700 - 1000
более 1000
Итого    

По формуле (18) получим средний доход в выборке: = 57100/100 = 571 (у.е.). Применив формулу (33) и рассчитав ее числитель в последнем столбце таблицы, получим дисперсию среднего выборочного дохода: Дв = 4285900/100 = 42859.

Затем необходимо определить предельную ошибку выборки по формуле (39)[1]:

=t ,(39)

где tкоэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки; средняя ошибка выборки, определяемая для повторной выборки по формуле (40), а для бесповторной – по формуле (41):

= , (40) = , (41)

где n – численность выборки; N – численность генеральной совокупности.

В нашей задаче выборка бесповторная, значит, применяя формулу (41), получим среднюю ошибку выборки при определении среднего возраста в генеральной совокупности: = = 19,640 (у.е.).

Для определения средней ошибки выборки при определении доли рабочих с доходами более 700 у.е. в генеральной совокупности необходимо определить дисперсию этой доли. Дисперсия доли альтернативного признака w (признак, который может принимать только два взаимоисключающих значения – например, больше или меньше определенного значения) определяется по формуле (42):

.(42)

В нашей задаче долю альтернативного признака (рабочие с доходами более 700 у.е.) найдем как отношение числа таких рабочих к общему числу рабочих в выборке: w = 20/100 = 0,2 или 20%. Теперь определим дисперсию этой доли по формуле (42): =0,2*(1-0,2) = 0,16. Теперь можно рассчитать среднюю ошибку выборки по формуле (41): = = 0,038 или 3,8%.

Значения вероятности и коэффициента доверия t имеются в математических таблицах нормального закона распределения вероятностей (если в выборке более 30 единиц), из которых в статистике широко применяются сочетания, приведенные в таблице 4:

Таблица 4. Значения интеграла вероятностей Лапласа

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.