Способы регулирования производительности насосов
Объемного типа
Производительность насосов объемного типа (см. формулы ((2.28) и (2.29)) пропорциональна частоте движения рабочего органа (поршня, шестерен, ротора и т. п.), рабочему объему и объемному КПД. С этими параметрами связаны способы регулирования производительности насосов объемного типа.
Изменение частоты движения рабочего органа и хода поршня в поршневых насосах технически не всегда легко реализовать (при этом нарушается и динамическая балансировка машины), так же как и, например, изменение хода поршня в поршневых насосах.
Иногда всасывающий клапан выполняют управляемым, задерживая его посадку на место (тем самым снижается объемный КПД машины); этот метод считают наиболее экономичным. Другой простой способ уменьшения объемного КПД – байпасирование.
Метод дросселирования в насосах объемного типа не используется, поскольку подача при этом меняется слабо, а потребляемая мощность резко возрастает.
На рис. 2.32 показана схема обвязки поршневого насоса 5, оборудованного предохранительным перепускным клапаном 6, байпасной линией 7 с регулятором расхода 8. Линия 1 соответствует идеальной характеристике насоса объемного типа ( = const), линия 2 — характеристике реального насоса (вследствие утечек с ростом давления подача насоса снижается), предохранительный клапан которого отрегулирован на предельное давление
рпр= ро + r gНпр,
с тем чтобы защитить насос и его обвязку от разрыва. Здесь ро – давление на линии всасывания насоса, r – плотность жидкости, Нпр – предельный напор.
Рис. 2.32. Работа насоса объемного типа на сеть: 1 – идеальная характеристика насоса;
2 – реальная характеристика насоса; 3 – исходная характеристика сети; 4 – характеристика сети с дросселем; 5 – насос; 6 – предохранительный клапан; 7 – байпасная линия; 8 – байпасный регулятор расхода; 9 – дроссель
Пусть задан рабочий расход в сети . Исходная характеристика 3 сети пересекается с характеристикой 2 насоса в рабочей точке А, и производительность (абсцисса точки А) больше заданной (рис. 2.32).
Предположим, что была предпринята попытка регулировать производительность дросселированием, для чего на линии нагнетания установили дроссель 9. Байпасную линию при этом будем считать закрытой. По мере закрывания дросселя 9 крутизна характеристики сети будет возрастать, при этом рабочая точка А будет перемещаться по характеристике насоса 2 вплоть до точки В. Заметим, что из-за практически вертикальной характеристики насоса 2 производительность при этом будет уменьшаться очень слабо. Как только характеристика сети пройдет выше точки В (а это значит, что изменение давления в сети стало больше предельного), начнет открываться предохранительный клапан 6, пропуская через себя часть жидкости с высоким напором Нпр. Когда характеристика сети станет соответствовать линии 4, подача через нее составит , а через клапан будет перепускаться жидкость с расходом
= – (см. рис. 2.32).
Мощность, теряемая жидкостью при перепуске через предохранительный клапан, составит
Nпр = r g Нпр.
Далее рассмотрим регулирование байпасированием при помощи регулятора расхода 8 на байпасной линии 7. Дроссель 9 при этом будем считать отсутствующим. При заданной подаче в сети находим точку С (см. рис. 2.32), которой соответствует напор Нб. Сеть и байпасная линия работают параллельно, т. е. при одинаковом напоре. Продолжая горизонталь Н = Нб до пересечения с характеристикой 2 насоса, находим его производительность . Тогда расход через байпасную линию = – . Мощность, теряемая жидкостью при перепуске через байпасную линию, равна
Nб = r g Нб Nпр,
откуда ясна чрезвычайно низкая экономичность регулирования дросселированием в объемных насосах. Кроме того, подача при таком способе регулирования определяется степенью открытия клапана, оборудованного пружиной (или грузом), которые не рассчитаны на обеспечение стабильного расхода. По этим причинам установка дросселя на линии нагнетания для объемных насосов бессмысленна. Установка же дросселя на линии всасывания недопустима по тем же обстоятельствам, что и для лопастных насосов. Поэтому способ дросселирования для регулирования подачи насосов объемного типа не применяют.
Компрессорные машины
Основные понятия. Назначение и области применения
Компрессорных машин
Понятие о компрессорных машинах и их классификация по некоторым признакам даны в п. 1.
Основными параметрами компрессорных машин являются производительность, степень сжатия и изотермический КПД. Производительность –количество газа, выраженное в единицах объема, подаваемое машиной в единицу времени. Производительность компрессоров обычно выражают в единицах объема газа, приведенного к нормальным условиям (273 К и 101 325 Па). Степень сжатия e – это отношение давления рк в линии нагнетания к давлению ро на линии всасывания. Изотермический КПД hиз характеризуется отношением мощности, необходимой для сжатия газа идеальной компрессорной машиной при изотермическом процессе сжатия газа, к фактической мощности компрессорной машины.
В дополнение к классификации, приведенной в п. 1, компрессоры классифицируются по отрасли производства, для которой они предназначены (химические, энергетические, общего назначения и т. д.), по роду сжимаемого газа (воздушные, кислородные, хлорные, азотные, гелиевые и т. д.), по непосредственному назначению (пускового воздуха, тормозные и т. п.).
По конечному давлению различают:
- вакуум-компрессоры (вакуум-насосы) – машины, которые служат для отсасывания газа из пространства с давлением ниже или выше атмосферного; степень сжатия e таких машин обычно превышает 100;
- компрессоры низкого давления, предназначенные для нагнетания газа при давлении от 0,15 до 1,2 МПа;
- компрессоры среднего давления – с давлением в линии нагнетания от 1,2 до 10 МПа;
- компрессоры высокого давления – с конечным давлением от 10 до 100 МПа;
- компрессоры сверхвысокого давления, предназначенные для сжатия газа выше 100 МПа.
Компрессоры называют дожимающими, если давление всасываемого газа ро существенно превышает атмосферное.
По способу отвода теплоты различают компрессоры с водяным и воздушным охлаждением. По типу привода – с приводом от электродвигателя, двигателя внутреннего сгорания, паровой или газовой турбины. Для удобства монтажа часто используют электродвигатели, ротор которых является валом компрессора (моноблочный принцип).
Расчет, конструирование и эксплуатация компрессора ведутся с учетом свойств газа, для сжатия которого он предназначен. Свойства сжимаемого газа определяют размеры и конструкцию главных узлов и деталей компрессора. Например, при сжатии пожароопасных газов (кислород, водород, углеводородные газы и др.) необходимо обеспечение повышенной герметичности компрессора и взрывобезопасности двигателя, систем защиты и управления. При сжатии газов, отличающихся токсичностью (оксид углерода, хлор и др.) или повышенной текучестью (гелий), главное требование — герметичность компрессора. При сжатии газов с коррозионными свойствами (сероводород, хлор и др.) необходимо применение специальных материалов для деталей газового тракта компрессора.
Некоторые газы активно вступают в химическую реакцию с минеральным маслом (например кислород), растворяют минеральное масло или смывают его с трущихся поверхностей компрессора (например углеводородные газы и их смеси), поэтому необходимо применение специальной смазки или выполнение конструкции компрессора, не требующей смазки.
Области применения компрессоров по производительности и давлению (рис. 1.7) не являются постоянными и расширяются в ходе научно-технического прогресса.
Наиболее распространены и многообразны по конструктивному выполнению, схемам и компоновкам поршневые компрессоры; их различают по устройству кривошипно-шатунного механизма (крейцкопфные и бескрейцкопфные), устройству и расположению цилиндров (простого и двойного действия, L-, У- и Ш–образные, горизонтальные и вертикальные, оппозитные, со ступенчатым поршнем и т. д.), числу ступеней сжатия. Поршневые компрессоры широко применяют в установках для получения искусственных удобрений и пластических масс, в холодильной промышленности и криогенной технике. В азотно-туковой промышленности поршневыми компрессорами сжимается азотно-водородная смесь до 25…50 МПа. В производстве полиэтилена сжатие этилена осуществляется до 200…250 МПа. В нефтедобывающей и нефтеперерабатывающей промышленности поршневые компрессоры применяются в газлифтах, в процессах очистки нефтепродуктов от сернистых соединений и каталитического риформинга легких нефтепродуктов, для получения высокооктанового бензина и ароматических углеводородов. Необходимо отметить, что производительность объемных компрессоров слабо зависит от давления нагнетания.
В области средних и больших производительностей, низких и средних давлений часто используют винтовые компрессоры. Винтовые маслозаполненные компрессоры общего назначения с воздушным и водяным охлаждением и асимметричным профилем, несмотря на меньший КПД, более эффективны (по стоимости 1 м3 сжатого газа) по сравнению с поршневыми, центробежными и ротационно-пластинчатыми компрессорами в диапазоне производительностей от 10 до 50 м3/мин. Межремонтный пробег винтовых компрессоров определяется износом подшипников, срок службы которых составляет не менее 15 тыс. ч, а в отдельных случаях достигает 100 тыс. ч. Одна из особенностей винтовых компрессоров — способность сжимать двухфазные (газ – жидкость) среды.
В 1980-х гг. появились данные о моноблочных воздушных одноступенчатых винтовых компрессорах, в полости сжатия которых вместо масла впрыскивается вода, что обеспечивает уплотнение зазоров, почти изотермический процесс сжатия и чистоту сжатого воздуха. Вода подается через регулятор, и после использования легко сепарируется с повторным использованием или сбросом в канализацию. По сравнению с аналогичными по параметрам двухступенчатыми винтовыми компрессорами сухого сжатия (без применения смазывающе-уплотняющей жидкости) водозаполненные компрессоры менее металлоемки, в них отсутствуют промежуточный и конечный холодильники.
Ротационно-пластинчатые компрессоры и вакуум-насосы также достаточно широко распространены и занимают устойчивое положение в области малых производительностей. Ротационно-пластинчатые компрессоры общего назначения выпускают производительностью от 0,1 до 100 м3/мин, с абсолютным давлением всасывания от 0,01 до 0,1 МПа и давлением нагнетания: до 1,2 МПа – в одноступенчатом исполнении; 1,6 МПа МПа – в двухступенчатом; 2,5 МПа – в трехступенчатом. В указанном диапазоне параметров ротационно-пластинчатые компрессоры практически не уступают поршневым компрессорам по КПД и превосходят их в компактности, уравновешенности и надежности. В выпуске ротационно-пластинчатых компрессоров общего назначения увеличивается доля машин сухого сжатия и маслозаполненных с постепенным отказом от смазываемых компрессоров.
При откачке и сжатии различных газов и газожидкостных смесей, загрязненных механическими примесями, применяются машины жидкостно-кольцевые (в частности, водокольцевые), а также машины типа Рутс (машина с вращающимися профилированными роторами). По сравнению с машинами других типов эти машины получили наибольшее распространение в качестве вакуум-насосов производительностью от самых малых до 400 м3/мин, а машины типа Рутс – до 2000 м3/мин при абсолютном давлении всасывания от 0,02 МПа и выше.
Наиболее экономичны в области больших производительностей центробежные компрессоры общего назначения производительностью от 20 м3/мин и выше. Совершенствование конструкций центробежных машин привело к использованию их там, где традиционно применялись другие типы компрессоров. К преимуществам их относятся высокая производительность, долговечность и более высокая надежность работы, малые габариты и масса, подача газа без пульсаций давления. В настоящее время эксплуатируются центробежные компрессоры с давлением нагнетания более 100 МПа.
Осевые компрессоры характеризуются производительностью более 1000 м3/мин и относительно небольшой степенью сжатия в одной ступени (e = 10¸ 15). В большинстве случаев – это многоступенчатые машины, применяемые в авиационной, криогенной технике, в машиностроительной, газовой, химической, металлургической и др. отраслях промышленности. Современные осевые компрессоры газотурбинных установок имеют степень сжатия до 25…35 и выше. В зависимости от скорости газового потока в рабочих органах различают дозвуковые и сверхзвуковые осевые компрессоры с турбо- или электроприводом с частотой вращения 500 с–1 и выше. Осевые компрессоры стационарных установок имеют преимущество перед центробежными — более высокие КПД; однако масса и габариты их несколько выше. Стоимость крупных стационарных установок центробежных и осевых компрессоров примерно одинаковыодинакова. Однако осевые компрессоры имеют ограниченный диапазон рабочих режимов из-за помпажа, чувствительности к коррозии и эрозии.
Поршневые компрессоры
На рис. 3.1 показаны типовые конструктивные схемы поршневых компрессоров: крейцкопфные (крейцкопф-ползун с шарниром) — с двусторонним всасыванием и бескрейцкопфные – одностороннего всасывания (мощностью до 100 кВт). По расположению цилиндров поршневые компрессоры подразделяют на вертикальные, горизонтальные и угловые. Угловые компрессоры подразделяют на прямоугольные (или L–образные, когда ряды цилиндров расположены вертикально и горизонтально, т. е. угол между их осями составляет 90о ), а также V–образные и Ш–образные — машины с наклонными цилиндрами, установленными –- и Ш–образно. Оппозитные компрессоры представляют собой горизонтальные машины с встречным движением поршней и расположением цилиндров по обе стороны вала; они отличаются высокой динамической уравновешенностью, меньшими габаритами и массой, и поэтому практически полностью вытеснили традиционный тип крупного горизонтального компрессора. Для машин малой и средней производительности основными являются два типа компрессора: прямоугольный и V-образный.
Рис. 3.1. Схемы типовых конструкций поршневых компрессоров и двигателей-компрессоров: а) – бескрейцкопфные (одностороннее всасывание): 1 – вертикальный; 2 – У-типа; 3 – Ш-типа; 4 – горизонтальный оппозитный (корпусного типа); 5 – вертикальный со ступенчатым поршнем; 6 – двигатель-компрессор L-типа; 7 – двигатель-компрессор Ш-типа; б) – крейцкопфные (с двусторонним всасыванием): 1 – в одну линию; 2 – L-типа; 3 – V-типа; 4 – Ш-типа; 5 – горизонтальный оппозитный; 6 – горизонтальный со ступенчатым поршнем; 7 – двигатель-компрессор L-типа
По числу ступеней сжатия различают одно-, двух- и многоступенчатые компрессоры. Многоступенчатое сжатие позволяет уменьшить температуру сжатого газа, увеличить КПД машины, снизить поршневые силы.
Поршневые компрессоры с лабиринтным уплотнением выполняются без поршневых колец и без смазки, т. е. уплотнение пары трения «цилиндр—поршень» представляет собой лабиринт, состоящий из ряда круговых канавок (рис. 3.2). Для уменьшения внутренних утечек газа компрессоры с лабиринтным уплотнением выполняются быстроходными, со скоростью движения поршня не менее 4 м/с. Для сокращения утечек в атмосферу сальники выполняются графитовыми с малыми зазорами и с лабиринтными канавками на внутренней поверхности. При сжатии газов, утечка которых в атмосферу недопустима, к сальникам под давлением подводится воздух, азот или другой безвредный газ. Компрессоры с лабиринтным уплотнением выпускаются одно- и многоступенчатыми, мощностью до 750 кВт на конечное давление до 10 МПа. Их стоимость выше стоимости обычных поршневых компрессоров, поэтому они применяются преимущественно для сжатия совершенно сухих газов (хлор, кислород) или в тех случаях, когда нежелательно присутствие в газе следов графита.
Родственными поршневым являются мембранные компрессоры, в которых объем газа изменяется при возвратно-поступательном движении эластичной мембраны, зажатой между крышкой и корпусом компрессора. Мембранные компрессоры обычно применяются при малых производительностях.
Рис. 3.2. Узел цилиндра:1 – цилиндр; 2 – поршень; 3 – лабиринтное уплотнение
Двухроторные компрессоры
Двухроторный компрессор типа Рутс представляет собой бесклапанную машину объемного типа. Два идентичных, обычно симметричных, двухлопастных ротора вращаются в противоположных направлениях внутри корпуса, составленного из двух полуцилиндров с минимально возможными зазорами между роторами и между роторами и корпусом. Синхронизация вращения роторов осуществляется при помощи шестерен, расположенных снаружи корпуса. Сжатие газа в этой машине происходит одновременно с нагнетанием благодаря уменьшению объема газа вследствие встречного движения роторов (см. заштрихованную область на рис. 3.3 а, б). В тот момент, когда лопасть ротора соединяет отсеченную порцию газа с линией нагнетания, давление в рабочей камере скачкообразно увеличивается. Из рV — диаграммы видно (рис. 3.4), что такой способ малоэкономичен и обеспечивает малую степень сжатия газа.
Машины типа Рутс выпускаются производительностью от нескольких литров в минуту до 2000 м3/мин с давлением нагнетания до 0,15 МПа. Широкое применение этих машин, главным образом в качестве вакуум-насосов и газодувок, объясняется простотой их конструкций и эксплуатации, отсутствием трущихся элементов и смазки в проточной части, уравновешенностью, долговечностью.
Рис. 3.3. Принцип работы компрессора типа Рутс: а) – такт всасывания; б) – такт отсечки; в) – такт сжатия; г) – такт нагнетания
Рис. 3.4.Диаграмма компрессора типа Рутс: 1 – площадь abde, соответствует работе сжатия в компрессоре типа Рутс; 2 – площадь acde, соответствует работе сжатия поршневого компрессора
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|