Сделай Сам Свою Работу на 5

Алгоритмы организации взаимодействия процессов

Требования, предъявляемые к алгоритмам

Организация взаимоисключения для критических участков, конечно, позволит избежать возникновения race condition, но не является достаточной для правильной и эффективной параллельной работы кооперативных процессов. Сформулируем пять условий, которые должны выполняться для хорошего программного алгоритма организации взаимодействия процессов, имеющих критические участки, если они могут проходить их в произвольном порядке.

1. Задача должна быть решена чисто программным способом на обычной машине, не имеющей специальных команд взаимоисключения. При этом предполагается, что основные инструкции языка программирования (такие примитивные инструкции, как load, store, test) являются атомарными операциями.

2. Не должно существовать никаких предположений об относительных скоростях выполняющихся процессов или числе процессоров, на которых они исполняются.

3. Если процесс Pi исполняется в своем критическом участке, то не существует никаких других процессов, которые исполняются в соответствующих критических секциях. Это условие получило название условия взаимоисключения (mutual exclusion).

4. Процессы, которые находятся вне своих критических участков и не собираются входить в них, не могут препятствовать другим процессам входить в их собственные критические участки. Если нет процессов в критических секциях и имеются процессы, желающие войти в них, то только те процессы, которые не исполняются в remainder section, должны принимать решение о том, какой процесс войдет в свою критическую секцию. Такое решение не должно приниматься бесконечно долго. Это условие получило название условия прогресса (progress).

5. Не должно возникать неограниченно долгого ожидания для входа одного из процессов в свой критический участок. От того момента, когда процесс запросил разрешение на вход в критическую секцию, и до того момента, когда он это разрешение получил, другие процессы могут пройти через свои критические участки лишь ограниченное число раз. Это условие получило название условия ограниченного ожидания (bound waiting).



Надо заметить, что описание соответствующего алгоритма в нашем случае означает описание способа организации пролога и эпилога для критической секции.

Запрет прерываний

Наиболее простым решением поставленной задачи является следующая организация пролога и эпилога:

while (some condition) {

запретить все прерывания

critical section

разрешить все прерывания

remainder section

}

Поскольку выход процесса из состояния исполнение без его завершения осуществляется по прерыванию, внутри критической секции никто не может вмешаться в его работу. Однако такое решение может иметь далеко идущие последствия, поскольку позволяет процессу пользователя разрешать и запрещать прерывания во всей вычислительной системе. Допустим, что пользователь случайно или по злому умыслу запретил прерывания в системе и зациклил или завершил свой процесс. Без перезагрузки системы в такой ситуации не обойтись.

Тем не менее запрет и разрешение прерываний часто применяются как пролог и эпилог к критическим секциям внутри самой операционной системы, например при обновлении содержимого PCB.

Переменная-замок

В качестве следующей попытки решения задачи для пользовательских процессов рассмотрим другое предложение. Возьмем некоторую переменную, доступную всем процессам, с начальным значением равным 0. Процесс может войти в критическую секцию только тогда, когда значение этой переменной-замка равно 0, одновременно изменяя ее значение на 1 – закрывая замок. При выходе из критической секции процесс сбрасывает ее значение в 0 – замок открывается (как в случае с покупкой хлеба студентами в разделе «Критическая секция»).

shared int lock = 0;

/* shared означает, что */

/* переменная является разделяемой */

 

while (some condition) {

while(lock); lock = 1;

critical section

lock = 0;

remainder section

}

К сожалению, при внимательном рассмотрении мы видим, что такое решение не удовлетворяет условию взаимоисключения, так как действие while(lock); lock = 1; не является атомарным. Допустим, процесс P0 протестировал значение переменной lock и принял решение двигаться дальше. В этот момент, еще до присвоения переменной lock значения 1, планировщик передал управление процессу P1. Он тоже изучает содержимое переменной lock и тоже принимает решение войти в критический участок. Мы получаем два процесса, одновременно выполняющих свои критические секции.

Аппаратная поддержка взаимоисключений

Наличие аппаратной поддержки взаимоисключений позволяет упростить алгоритмы и повысить их эффективность точно так же, как это происходит и в других областях программирования. Мы уже обращались к общепринятому hardware для решения задачи реализации взаимоисключений, когда говорили об использовании механизма запрета/разрешения прерываний.

Многие вычислительные системы помимо этого имеют специальные команды процессора, которые позволяют проверить и изменить значение машинного слова или поменять местами значения двух машинных слов в памяти, выполняя эти действия как атомарные операции. Давайте обсудим, как концепции таких команд могут использоваться для реализации взаимоисключений.

Команда Test-and-Set (проверить и присвоить 1)

О выполнении команды Test-and-Set, осуществляющей проверку значения логической переменной с одновременной установкой ее значения в 1, можно думать как о выполнении функции

int Test_and_Set (int *target){

int tmp = *target;

*target = 1;

return tmp;

}

С использованием этой атомарной команды мы можем модифицировать наш алгоритм для переменной-замка, так чтобы он обеспечивал взаимоисключения

shared int lock = 0;

while (some condition) {

while(Test_and_Set(&lock));

critical section

lock = 0;

remainder section

}

К сожалению, даже в таком виде полученный алгоритм не удовлетворяет условию ограниченного ожидания для алгоритмов. Подумайте, как его следует изменить для соблюдения всех условий.

Команда Swap (обменять значения)

Выполнение команды Swap, обменивающей два значения, находящихся в памяти, можно проиллюстрировать следующей функцией:

void Swap (int *a, int *b){

int tmp = *a;

*a = *b;

*b = tmp;

}

Применяя атомарную команду Swap, мы можем реализовать предыдущий алгоритм, введя дополнительную логическую переменную key, локальную для каждого процесса:

shared int lock = 0;

int key;

while (some condition) {

key = 1;

do Swap(&lock,&key);

while (key);

critical section

lock = 0;

remainder section

}

Заключение

Для достижения поставленной цели различные процессы могут исполняться псевдопараллельно на одной вычислительной системе или параллельно на разных вычислительных системах, взаимодействуя между собой. Причинами для совместной деятельности процессов обычно являются: необходимость ускорения решения задачи, совместное использование обновляемых данных, удобство работы или модульный принцип построения программных комплексов. Процессы, которые влияют на поведение друг друга путем обмена информацией, называют кооперативными или взаимодействующими процессами, в отличие от независимых процессов, не оказывающих друг на друга никакого воздействия и ничего не знающих о взаимном существовании в вычислительной системе.

Для обеспечения корректного обмена информацией операционная система должна предоставить процессам специальные средства связи. По объему передаваемой информации и степени возможного воздействия на поведение процесса, получившего информацию, их можно разделить на три категории: сигнальные, канальные и разделяемую память. Через канальные средства коммуникации информация может передаваться в виде потока данных или в виде сообщений и накапливаться в буфере определенного размера. Для инициализации «общения» процессов и его прекращения могут потребоваться специальные действия со стороны операционной системы. Процессы, связываясь друг с другом, могут использовать непрямую, прямую симметричную и прямую асимметричную схемы адресации. Существуют одно- и двунаправленные средства передачи информации. Средства коммуникации обеспечивают надежную связь, если при общении процессов не происходит потери и повреждения информации, не появляется лишней информации, не нарушается порядок данных.

Последовательное выполнение некоторых действий, направленных на достижение определенной цели, называется активностью. Активности состоят из атомарных операций, выполняемых неразрывно, как единичное целое. При исполнении нескольких активностей в псевдопараллельном режиме атомарные операции различных активностей могут перемешиваться между собой с соблюдением порядка следования внутри активностей. Это явление получило название interleaving (чередование). Если результаты выполнения нескольких активностей не зависят от варианта чередования, то такой набор активностей называется детерминированным. В противном случае он носит название недетерминированного. Существует достаточное условие Бернстайна для определения детерминированности набора активностей, но оно накладывает очень жесткие ограничения на набор, требуя практически не взаимодействующих активностей. Про недетерминированный набор активностей говорят, что он имеет race condition (условие гонки, состязания). Устранение race condition возможно при ограничении допустимых вариантов чередований атомарных операций с помощью синхронизации поведения активностей. Участки активностей, выполнение которых может привести к race condition, называют критическими участками. Необходимым условием для устранения race condition является организация взаимоисключения на критических участках: внутри соответствующих критических участков не может одновременно находиться более одной активности.

Для эффективных программных алгоритмов устранения race condition помимо условия взаимоисключения требуется выполнение следующих условий: алгоритмы не используют специальных команд процессора для организации взаимоисключений, алгоритмы ничего не знают о скоростях выполнения процессов, алгоритмы удовлетворяют условиям прогресса и ограниченного ожидания.

Применение специальных команд процессора, выполняющих ряд действий как атомарную операцию, – Test-and-Set, Swap – позволяет существенно упростить алгоритмы синхронизации процессов.


 

5. Лекция: Тупики

Введение

В предыдущих лекциях мы рассматривали способы синхронизации процессов, которые позволяют процессам успешно кооперироваться. Однако в некоторых случаях могут возникнуть непредвиденные затруднения. Предположим, что несколько процессов конкурируют за обладание конечным числом ресурсов. Если запрашиваемый процессом ресурс недоступен, ОС переводит данный процесс в состояние ожидания. В случае когда требуемый ресурс удерживается другим ожидающим процессом, первый процесс не сможет сменить свое состояние. Такая ситуация называется тупиком (deadlock). Говорят, что в мультипрограммной системе процесс находится в состоянии тупика, если он ожидает события, которое никогда не произойдет. Системная тупиковая ситуация, или «зависание системы», является следствием того, что один или более процессов находятся в состоянии тупика. Иногда подобные ситуации называют взаимоблокировками. В общем случае проблема тупиков эффективного решения не имеет.

Рассмотрим пример. Предположим, что два процесса осуществляют вывод с ленты на принтер. Один из них успел монополизировать ленту и претендует на принтер, а другой наоборот. После этого оба процесса оказываются заблокированными в ожидании второго ресурса (см. рис. 5.1).


Рис. 5.1. Пример тупиковой ситуации

Определение. Множество процессов находится в тупиковой ситуации, если каждый процесс из множества ожидает события, которое может вызвать только другой процесс данного множества.Так как все процессы чего-то ожидают, то ни один из них не сможет инициировать событие, которое разбудило бы другого члена множества и, следовательно, все процессы будут спать вместе.

Выше приведен пример взаимоблокировки, возникающей при работе с так называемыми выделенными устройствами. Тупики, однако, могут иметь место и в других ситуациях. Например, в системах управления базами данных записи могут быть локализованы процессами, чтобы избежать состояния гонок. В этом случае может получиться так, что один из процессов заблокировал записи, необходимые другому процессу, и наоборот. Таким образом, тупики могут иметь место, как на аппаратных, так и на программных ресурсах.

Тупики также могут быть вызваны ошибками программирования. Другой причиной бесконечного ожидания может быть дискриминационная политика по отношению к некоторым процессам. Однако чаще всего событие, которого ждет процесс в тупиковой ситуации, – освобождение ресурса, поэтому в дальнейшем будут рассмотрены методы борьбы с тупиками ресурсного типа.

Ресурсами могут быть как устройства, так и данные. Некоторые ресурсы допускают разделение между процессами, то есть являются разделяемыми ресурсами. Например, память, процессор, диски коллективно используются процессами. Другие не допускают разделения, то есть являются выделенными, например лентопротяжное устройство. К взаимоблокировке может привести использование как выделенных, так и разделяемых ресурсов. Например, чтение с разделяемого диска может одновременно осуществляться несколькими процессами, тогда как запись предполагает исключительный доступ к данным на диске. Можно считать, что часть диска, куда происходит запись, выделена конкретному процессу. Поэтому в дальнейшем мы будем исходить из предположения, что тупики связаны с выделенными ресурсами, то есть тупики возникают, когда процессу предоставляется эксклюзивный доступ к устройствам, файлам и другим ресурсам.

Традиционная последовательность событий при работе с ресурсом состоит из запроса, использования и освобождения ресурса. Тип запроса зависит от природы ресурса и от ОС. Запрос может быть явным, например специальный вызов request, или неявным – open для открытия файла. Обычно, если ресурс занят и запрос отклонен, запрашивающий процесс переходит в состояние ожидания.

Далее в данной лекции будут рассматриваться вопросы обнаружения, предотвращения, обхода тупиков и восстановления после тупиков. Как правило, борьба с тупиками – очень дорогостоящее мероприятие. Тем не менее, для ряда систем, например для систем реального времени, иного выхода нет.



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.