Сделай Сам Свою Работу на 5

Схема поперечного сечения стального слитка





 

5.Наличие дислокаций и несовершенство кристаллов, с одной стороны, оказывают ослабляющий эффект на металл, а при определенных условиях дефекты могут упрочнять металл. Упрочняющий эффект обусловлен взаимодействием дислокаций друг с другом и с различными несовершенствами кристаллического строения. Сущность процесса упрочнения состоит в торможении дислокаций, создании препятствий для их перемещения.

Взаимодействие дислокаций многообразно и сложно. Они могут взаимодействовать в одной или разных плоскостях, иметь одноименный или разноименный знак, но если искажение решетки в результате их взаимодействия увеличивается, то возрастает сопротивление деформации кристалла.

Наличие в реальных кристаллах большого количества дислокаций и вакансий приводит к значительному снижению механической прочности. Самую высокую прочность имеет Fe, содержащее либо минимальную, либо максимальную концентрацию дефектов. Следовательно, прочность кристаллических тел с увеличением концентрации дефектов (плотности дислокаций) до какого-то предела снижается, а далее возрастает (рисунок 4.8). Это явление объясняет дислокационная теория пластической деформации. Рассмотрим ее кратко.



Важнейшее свойство дислокаций — их легкая подвижность и активное взаимодействие между собой и другими дефектами решетки. Это взаимодействие затрудняет движение дислокаций в кристалле и тем самым упрочняет его. С увеличением пластической деформации кристалла плотность дислокаций возрастает в тысячи, иногда — в миллионы раз (в недеформированных металлических кристаллах че­рез площадку в 1 см2 проходит 106—108 дислокаций). При этом возрастает также концентрация других дефектов, которые затрудняют перемещение дислокаций, и для своего преодоления требуют более высокое напряжение. В результате металл упрочняется. Особенно сильное тормозящее действие движению дислокаций оказывают границы зерен и блоков в них. Таким образом, дефекты кристаллической решетки металла являются тем препятствием, которое затрудняет движение дислокаций и приводит к упрочнению металла. Поэтому, чтобы повысить прочность металлов, необходимо либо уменьшить концентрацию дефектов в них, получая бездефектные кристаллы, например нитевидные кристаллы («усы»), либо создавать поликристаллические однородные тела с повышенной плотностью дислокаций, подвижность которых ограничивают легированием, закалкой или наклепом металла. При этом плотность дислокаций не должна превышать 1012—1013 см 2, так как при большей дислокаций металл становится хрупким. На практике обычно следуют по второму пути.



Рисунок 4.8 - Зависимость прочности металлов от концентрации

 

 

6.Деформированный металл по сравнению с недеформированным имеет повышенный запас энергии и находится в неравновесном, термодинамически неустойчивом состоянии. В таком металле даже при комнатной темпе­ратуре могут самопроизвольно протекать процессы, при­водящие его в более устойчивое состояние. Однако, если деформированный металл нагреть, то скорость этих про­цессов возрастает. Небольшой нагрев (для железа 300-400°С) ведет к снятию искажений кристаллической ре­шетки, но микроструктура остается без изменений, зерна по-прежнему вытянуты. Прочность при этом несколько; снижается, а пластичность повышается. Такая обработка называется возвратом или отдыхом.

При дальнейшем повышении температуры подвижность атомов возрастает и среди вытянутых зерен идет интенсивное зарождение и рост новых равноосных сво­бодных от напряжений зерен. Зародыши новых зерен возникают в участках с наиболее искаженной кристаллической решеткой, с повышенным уровнем свободной энергии, термодинамически наименее устойчивых. Новые зерна растут за счет старых, вытянутых, до их столкно­вения друг с другом и до полного исчезновения вытя­нутых зерен. Это явление называется рекристалли­зацией (первичной).



Рекристаллизация является диффузионным процес­сом и протекает неравномерно, одни зерна зарождаются и растут раньше, другие позднее. После рекристаллиза­ции металл состоит из новых равноосных зерен. Более высокий нагрев приводит к развитию собирательной ре­кристаллизации, т. е. к росту одних рекристаллизованных зерен за счет других, более мелких. Чем выше ­температура нагрева, тем интенсивнее идет собирательная рекристаллизация, так как с повышением температуры диффузионные процессы протекают быстрее и создают условия для образования крупнозернистого металла.

7.Степень переохлаждения — уровень охлаждения жидкого металла ниже температуры перехода его в кристаллическую (твердую) модификацию. Разность между температурами Тп и Тк, при которых может протекать процесс кристаллизации, носит название степени переохлаждения:

ΔТ=Тпк.

8.Критический размер зародыша — число молекул в зародыше (центре кристаллизации), который находится в состоянии неустойчивого равновесия с окружающей средой. То есть если увеличим число молекул, то зародыш приобретёт способность к дальнейшему росту, если же уменьшим число молекул, то зародыш будет и далее уменьшаться. Зародыш критического размера называется критическим зародышем.

— докритические зародыши,

— закритические зародыши.

Здесь — число молекул в зародыше.

Критический размер зародыша уменьшается с увеличением степени переохлаждения, что приводит к созданию условий для образования большего числа зародышей.

9. Полиморфизм - способность твердых веществ и жидких кристаллов существовать в двух или нескольких формах с различной кристаллической структурой и свойствами при одном и том же химическом составе.

Полиморфизм простых веществ обычно называют аллотропией, в то же время понятие полиморфизма не относится к некристаллическим аллотропным формам (например, газообразным О2 и О3). Типичный пример полиморфных форм - модификации углерода (алмаз, лонсдейлит, графит, карбины и фуллерены), которые резко различаются по свойствам.

В случае молекулярных кристаллов полиморфизм проявляется в различной упаковке молекул в кристалле или в изменении формы молекул, а в ионных кристаллах - в различном взаимном расположении катионов и анионов. Некоторые простые и сложные вещества имеют более двух полиморфных модификаций. Например, диоксид кремния имеет десять модификаций, фторид кальция - шесть, нитрат аммония - четыре. Полиморфные модификации принято обозначать греческими буквами α, β, γ, δ, ε,... начиная с модификаций, устойчивых при низких температурах.

Переход одной полиморфной модификации в другую называется полиморфными превращениями. Эти переходы происходят при изменении температуры или давления и сопровождаются скачкообразным изменением свойств.

Процесс перехода одной модификации в другую может быть обратимым или необратимым. Полиморфные превращения могут проходить и без существенного изменения структуры. Иногда изменение кристаллической структуры вообще отсутствует, например, при переходе α-Fe в β-Fe при 769 С структура железа не меняется, однако исчезают его ферромагнитные свойства.

10. Предел прочности – это напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца.

;

где – максимальная нагрузка, предшествующая разрушению;
– первоначальная площадь поперечного сечения образца.

Предел текучести – напряжение, при котором в материале начинают интенсивно накапливаться остаточные (пластические) деформации, причем этот процесс идет при практически постоянном напряжении.

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Характеристикой вязкости является ударная вязкость , (удельная работа разрушения).

11.Сера вызывает красноломкость стали, то есть охрупчивание при высоких температурах. Фосфор вызывает хладоломкость, то есть охрупчивание при низких температурах.

12. Сталь 08 кп - углеродистая конструкционная качественная кипящая сталь с содержанием углерода 0,08%.

Ст 1 сп - углеродистая сталь обыкновенного качества, номер марки 1, спокойная, поставляется потребителям по механическим свойствам (группа А)

У7 – качественная инструментальная сталь с содержанием углерода 0,65...0,74% (около 70%)

13. СЧ15 – чугун серый, предел прочности при растяжении 150 МПа.

ВЧ45- высокопрочный чугун, предел прочности при растяжении 450 МПа.

КЧ65 – 3-ковкий чугун с пределом прочности при растяжении 650 МПа и относительным удлинением при разрыве 3 %.

14. Серый чугун – это сплав системы Fe-C-Si, содержащий в качестве примесей марганец, фосфор, серу. Углерод в серых чугунах преимущественно находится в виде графита пластинчатой формы.

Структура отливок определяется химическим составом чугуна и технологическими особенностями его термообработки. Механические свойства серого чугуна зависят от свойств металлической матрицы, формы и размеров графитовых включений. Свойства металлической матрицы чугунов близки к свойствам стали. Графит, имеющий невысокую прочность, снижает прочность чугуна.

Чем меньше графитовых включений и выше их дисперсность, тем больше прочность чугуна.

Графитовые включения вызывают уменьшение предела прочности чугуна при растяжении. На прочность при сжатии и твердость чугуна частицы графита практически не оказывают влияния. Свойство графита образовывать смазочные пленки обусловливает снижение коэффициента трения и увеличение износостойкости изделий из серого чугуна. Графит улучшает обрабатываемость резанием.

Серый чугун широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров. Согласно ГОСТ 1412-85 серый чугун маркируют буквами «С» – серый и «Ч» – чугун. Число после буквенного обозначения показывает среднее значение предела прочности чугуна при растяжении.

15. Отличительной особенностью высокопрочного чугуна являются его высокие механические свойства, обусловленные наличием в структуре шаровидного графита. Чугун с шаровидным графитом обладает не только высокой прочностью, но и пластичностью.

Получение шаровидного графита в чугуне достигается модифицированием расплава присадками, содержащими Mg, Ca, Се и другие редкоземельные металлы.

Химический состав и свойства высокопрочных чугунов регламентируются ГОСТ 7293-85 и маркируются буквами «В» – высокопрочный, «Ч» – чугун и числом, обозначающим среднее значение предела прочности чугуна при растяжении.

Высокопрочный чугун с шаровидным графитом является наиболее перспективным литейным сплавом, с помощью которого можно успешно решать проблему снижения массы конструкции при сохранении их высокой надежности и долговечности. Высокопрочный чугун используют для изготовления ответственных деталей в автомобилестроении (коленчатые валы, зубчатые колеса, цилиндры и др.).

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.