Сделай Сам Свою Работу на 5

УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА





ТЕМПЕРАТУРА

Любое макроскопическое тело или группа макроскопических тел называетсятермодинамической системой.

Тепловое или термодинамическое равновесие - такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т.д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.

Температура - физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Абсолютный нуль температуры - предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.

Термометр - прибор для измерения температуры. Обычно термометры градуируют по шкале Цельсия: температуре кристаллизации воды (таяния льда) соответствует 0°С, температуре ее кипения - 100°С.



Кельвин ввел абсолютную шкалу температур, согласно которой нулевая температура соответствует абсолютному нулю, единица измерения температуры по шкале Кельвина равна градусу Цельсия: [Т] = 1 К (Кельвин).

Связь температуры в энергетических единицах и температуры в градусах Кельвина:

где k = 1,38*10 -23 Дж/К - постоянная Больцмана.

Связь абсолютной шкалы и шкалы Цельсия:

T = t + 273

где t - температура в градусах Цельсия.

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре:

Средняя квадратичная скорость молекул

Учитывая равенство (1), основное уравнение молекулярно-кинетической теории можно записать так:

p=nkT

УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Пусть газ массой m занимает объем V при температуре Т и давлении р, а М- молярная масса газа. По определению, концентрация молекул газа: n = N/V, где N-число молекул.

Подставим это выражение в основное уравнение молекулярно-кинетической теории:

Величину R называют универсальной газовой постоянной, а уравнение, записанное в виде



называют уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Нормальные условия - давление газа равно атмосферному ( р = 101,325 кПа) при температуре таяния льда ( Т = 273,15 К ).

1. Изотермический процесс

Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

Если Т =const, то

Закон Бойля-Мариотта

Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется: p1V1=p2V2 при Т = const

График процесса, происходящего при постоянной температуре, называется изотермой.

2. Изобарный процесс

Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

Закон Гей-Люссака

Объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре:

Если газ, имея объем V0 находится при нормальных условиях: а затем при постоянном давлении переходит в состояние с температурой Т и объемом V, то можно записать

Обозначив

получим V=V0 T

Коэффициент называют температурным коэффициентом объемного расширения газов. График процесса, происходящего при постоянном давлении, называется изобарой.

3. Изохорный процесс

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Ecли V = const , то

Закон Шарля

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре:

Если газ, имея объем V0,находится при нормальных условиях:

а затем, сохраняя объем, переходит в состояние с температурой Т и давлением р, то можно записать



График процесса, происходящего при постоянном объеме, называется изохорой.

Пример. Каково давление сжатого воздуха, находящегося в баллоне вместимостью 20 л при 12°С, если масса этого воздуха 2 кг?

Из уравнения состояния идеального газа

определим величину давления:

Ответ: давление сжатого воздуха равно 8,2 *10 6 Па.

33) ОСНОВНОЕ УРАВНЕНИЕ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ (МКТ)

Основное уравнение МКТ:

Используя модель идеального газа, вычислим давление газа на стенку сосуда. В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υx скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υyскорости, параллельная стенке, остается неизменной (рис. 3.2.1).

Рисунок 3.2.1. Упругое столкновение молекулы со стенкой

Поэтому изменение импульса молекулы будет равно 2m0υx, где m0 – масса молекулы.

Выделим на стенке некоторую площадку S (рис. 3.2.2). За время Δt с этой площадкой столкнутся все молекулы, имеющие проекцию скорости υx, направленную в сторону стенки, и находящиеся в цилиндре с основанием площади S и высотой υxΔt.

Рисунок 3.2.2. Определение числа столкновений молекул с площадкой S

Пусть в единице объема сосуда содержатся n молекул; тогда число молекул в объеме цилиндра равно nSυxΔt. Но из этого числа лишь половина движется в сторону стенки, а другая половина движется в противоположном направлении и со стенкой не сталкивается. Следовательно, число ударов молекул о площадку S за время Δt равно Поскольку каждая молекула при столкновении со стенкой изменяет свой импульс на величину 2m0υx, то полное изменение импульса всех молекул, столкнувшихся за время Δt с площадкой S, равно По законам механики это изменение импульса всех столкнувшихся со стенкой молекул происходит под действием импульса силы FΔt, где F – некоторая средняя сила, действующая на молекулы со стороны стенки на площадке S. Но по 3-му закону Ньютона такая же по модулю сила действует со стороны молекул на площадку S. Поэтому можно записать:

Разделив обе части на SΔt, получим:

где p – давление газа на стенку сосуда.

При выводе этого соотношения предполагалось, что все n молекул, содержащихся в единице объема газа, имеют одинаковые проекции скоростей на ось X. На самом деле это не так.

В результате многочисленных соударений молекул газа между собой и со стенками в сосуде, содержащем большое число молекул, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равноправными (равновероятными), а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям. Распределение молекул газа по модулю скоростей называется распределением Максвелла.Дж. Максвелл в 1860 г. вывел закон распределения молекул газа по скоростям, исходя из основных положений молекулярно-кинетической теории. На рис. 3.2.3 представлены типичные кривые распределения молекул по скоростям. По оси абсцисс отложен модуль скорости, а по оси ординат – относительное число молекул, скорости которых лежат в интервале от υ до υ + Δυ. Это число равно площади выделенного на рис. 3.2.3 столбика.

Рисунок 3.2.3. Распределение молекул по скоростям. T2 > T1

Характерными параметрами распределения Максвелла являются наиболее вероятная скорость υв, соответствующая максимуму кривой распределения, исреднеквадратичная скорость где – среднее значение квадрата скорости.

С ростом температуры максимум кривой распределения смещается в сторону больших скоростей, при этом υв и υкв увеличиваются.

Чтобы уточнить формулу для давления газа на стенку сосуда, предположим, что все молекулы, содержащиеся в единице объема, разбиты на группы, содержащие n1, n2, n3 и т. д. молекул с проекциями скоростей υx1, υx2, υx3 и т. д. соответственно. При этом Каждая группа молекул вносит свой вклад в давление газа. В результате соударений со стенкой молекул с различными значениями проекций υxi скоростей возникает суммарное давление

Входящая в это выражение сумма – это сумма квадратов проекций υx всех n молекул в единичном объеме газа. Если эту сумму разделить на n, то мы получим среднее значение квадрата проекции скорости молекул:

Теперь формулу для давления газа можно записать в виде

Так как все направления для векторов скоростей молекул равновероятны, среднее значение квадратов их проекций на координатные оси равны между собой:

Последнее равенство вытекает из формулы:

Формула для среднего давления газа на стенку сосуда запишется в виде

Это уравнение устанавливает связь между давлением p идеального газа, массой молекулы m0, концентрацией молекул n, средним значением квадрата скорости и средней кинетической энергией поступательного движения молекул. Его называют основным уравнением молекулярно-кинетической теории газов.

Cредняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа


Таблица значений средней квадратичной скорости молекул некоторых газов

Для того чтоб понять, откуда же у нас получается эта формула, мы выведем среднюю квадратичную скорость молекул. Вывод формулы начинается с основного уравнения молекулярно кинетический теории (МКТ):

Где у нас количество вещества, для более легкого доказательства, возьмем на рассмотрение 1 моль вещества, тогда у нас получается:

Если посмотреть, то PV это две третьих средней кинетической энергии всех молекул (а у нас взят 1 моль молекул):

Тогда, если приравнять правые части, у нас получается, что для 1 моля газа средняя кинетическая энергия будет равняться:

Но средняя кинетическая энергия, так же находится, как :

 

А вот теперь, если мы приравняем правые части и выразим из них скорость и возьмем квадрат,Число Авогадро на массу молекулы , получается Молярная масса то у нас и получится формула для средней квадратичной скорости молекулы газа:

А если расписать универсальную газовую постоянную, как , и за одно молярную массу , то у нас получится?

В Формуле мы использовали :

— Средняя квадратичная скорость молекул

— Постоянная Больцмана

— Температура

— Масса одной молекулы

— Универсальная газовая постоянная

— Молярная масса

— Количество вещества

— Средняя кинетическая энергия молекул

— Число Авогадро

34)

Температура - физическая величина, характеризующая среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия. В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы.

Постоянная Больцмана - физическая постоянная (k), равная отношению универсальной газовой постоянной к постоянной Авогадро.

35)

распределения Максвелла

 

Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным. В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυx, Δυy, Δυz, причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. При этом мы не можем ничего определенного сказать о точном значении скорости той или иной частицы υi, поскольку за столкновениями и движениями каждой из молекул невозможно проследить ни в опыте, ни в теории. Такая детальная информация вряд ли имела бы практическую ценность. Распределение молекул идеального газа по скоростям впервые было получено знаменитым английским ученым Дж. Максвеллом в 1860 году с помощью методов теории вероятностей. Вывод формулы функции распределения молекул по скоростям есть в учебнике Ю.И Тюрина и др. (ч. 1) или И.В. Савельева (т. 1). Мы воспользуемся результатами этого вывода. Скорость – векторная величина. Для проекции скорости на ось х (x-й составляющей скорости) из (2.2.1) имеем
     

тогда

    (2.3.1)

где А1 – постоянная, равная

Графическое изображение функции показано на рисунке 2.2. Видно, что доля молекул со скоростью не равна нулю. При , (в этом физический смысл постоянной А1).


Рис. 2.2

Приведённое выражение и график справедливы для распределения молекул газа по x-компонентам скорости. Очевидно, что и по y- и z-компонентам скорости также можно получить:

     

Вероятность того, что скорость молекулы одновременно удовлетворяет трём условиям: x-компонента скорости лежит в интервале от υх до υх+dυх; y-компонента, в интервале от υy до υy+dυy; z-компонента, в интервале от υz до υz+dυz будет равна произведению вероятностей каждого из условий (событий) в отдельности:

     

где , или

    (2.3.2)

Формуле (2.3.2) можно дать геометрическое истолкование: dnxyz – это число молекул в параллелепипеде со сторонами dυx, dυy, dυz, то есть в объёме dV=dυxyz(рис. 2.3), находящемся на расстоянии от начала координат в пространстве скоростей.

Эта величина (dnxyz) не может зависеть от направления вектора скорости . Поэтому надо получить функцию распределения молекул по скоростям независимо от их направления, то есть по абсолютному значению скорости.

Если собрать вместе все молекулы в единице объёма, скорости которых заключены в интервале от υ до υ+dυ по всем направлениям, и выпустить их, то они окажутся через одну секунду в шаровом слое толщиной dυ и радиусом υ (рис. 2.4). Этот шаровой слой складывается из тех параллелепипедов, о которых говорилось выше.

   
  Рис. 2.3 Рис. 2.4  
       

Объём этого шарового слоя

     

Общее число молекул в слое, как следует из (2.3.2)

     

Отсюда следует закон распределения молекул по абсолютным значениям скоростей Максвелла:

    (2.3.3)

где – доля всех частиц в шаровом слое объема dV, скорости которых лежат в интервале от υ до υ+dυ.

При dυ = 1 получаем плотность вероятности, или функцию распределения молекул по скоростям:

    (2.3.4)

Эта функция обозначает долю молекул единичного объёма газа, абсолютные скорости которых заключены в единичном интервале скоростей, включающем данную скорость.

Обозначим: тогда из (2.3.4) получим:

    (2.3.5)

График этой функции показан на рисунке 2.5.


Рис. 2.5

Выводы:

  • Вид распределения молекул газа по скоростям для каждого газа зависит от рода газа (m) и от параметра состояния (Т). Давление P и объём газа V на распределение молекул не влияют.
  • В показателе степени стоит отношение , т.е. кинетической энергии, соответствующей данной скорости υ к (kТ) – средней энергии теплового движения молекул при данной температуре, значит распределение Максвелла характеризует распределение молекул по значениям кинетической энергии (то есть показывает, какова вероятность при данной температуре иметь именно такое значение кинетической энергии).

Рассмотрим пределы применимости классического описания распределения частиц по скоростям. Для этого воспользуемся соотношением неопределенностей Гейзенберга. Согласно этому соотношению координаты и импульс частицы не могут одновременно иметь определенное значение. Классическое описание возможно, если выполнены условия:

Здесь – постоянная Планка – фундаментальная константа, определяющая масштаб квантовых (микроскопических) процессов.

Таким образом, если частица находится в объеме , то в этом случае возможно описание ее движения на основе законов классической механики.

Наиболее вероятная, среднеквадратичная и средняя арифметическая скорости молекул газа

Рассмотрим, как изменяется с абсолютной величиной скорости число частиц, приходящихся на единичный интервал скоростей, при единичной концентрации частиц.

График функции распределения Максвелла

  ,    

приведен на рисунке 2.6.


Рис. 2.6

Из графика видно, что при «малых» υ, т.е. при , имеем ; затем достигает максимума А и далее экспоненциально спадает .

Величину скорости, на которую приходится максимум зависимости , называют наиболее вероятной скоростью.

Найдем эту скорость из условия равенства производной .

  ,   (2.3.6)

наиболее вероятная скорость одной молекулы.

Для одного моля газа:

  .   (2.3.7)

Среднюю квадратичную скорость найдем, используя соотношение :

  . – для одной молекулы; (2.3.8)

 

  . – для одного моля газа. (2.3.9)

Средняя арифметическая скорость:

  . .  

где – число молекул со скоростью от υ до υ+dυ. Если подставить сюда f(υ) и вычислить, то получим:

  . – для одной молекулы; (2.3.10)

 

  . – для одного моля газа. (2.3.11)

Все три скорости незначительно отличаются друг от друга множителем порядка единицы, причем

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.