Сделай Сам Свою Работу на 5

Координаты центров тяжести однородных тел.

Для однородного тела вес любой его части пропорционален объему этой части: , а вес Р всего тела пропорционален объему V этого тела , где - вес единицы объема.

Подставив эти значения Р и в предыдущие формулы, мы заметим, что в числителе как общий множитель выносится за скобку и со­кращается с в знаменателе. В результате получим:

Как видно, центр тяжести однородного тела зависит только от его геометрической формы, а от величины не зависит. По этой причине точку С, координаты которой определяются формулами, называют центром тяжести объема V.

Путем аналогичных рассуждений легко найти, что если тело пред­ставляет собой однородную плоскую и тонкую пластину, то для нее

где S - площадь всей пластины, a - площади ее частей.

Точку, координаты которой определяются формулами называют центром тяжести площади S.

Точно так же получаются формулы для координат центра тя­жести линии:

где L — длина всей линии, l — длины ее частей.

Таким образом, центр тяжести однородного тела определяется, как центр тяжести соответствующего объема, площади или линии.

 

Способы определения координат центра тяжести.

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

 

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

2. Разбиение. Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести и площадь известны.

 

.

3.Дополнение.Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны.

 

.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 37).

Рис.37

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ’ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:



где L - длина дуги АВ, равная . Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О, равном

где угол измеряется в радианах.

2) Центр тяжести площади тре­угольника. Разобьем площадь треуголь­ника ABD (рис. 38) прямыми, параллель­ными AD, на узкие полоски; центры тяжести этих полосок будут лежать на медиане BE треугольника.

Рис.38

 

Следовательно, и центр тяжести всего тре­угольника лежит на этой медиане. Аналогичный результат получается для двух других медиан. Отсюда заключаем, что центр тяжести площади треугольника лежит в точке пересечения его медиан.

При этом, как известно,

3) Центр тяжести площади кругового сектора. Рассмотрим круговой сектор ОАВ радиуса R с центральным углом (рис. 39). Разобьем мысленно площадь сектора ОАВ радиусами, проведенными из центра О, на п секторов. В пределе, при неограниченном увеличении числа , эти секторы можно рассматривать как плоские треугольники, центры тяжести которых лежат на дуге DE радиуса . Следовательно, центр тяжести сектора ОAB будет со­впадать с центром тяжести дуги DE. Окончательно получим, что центр тяжести площади кругового сектора лежит на его центральной оси симметрии на расстоянии от начального центра О, равном

 

Рис.39

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 40.

Рис.40

 

Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их: .

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.41).

Рис.41

 

Координаты центров тяжести:

Площади:

Поэтому:

Рис. 6.5.

Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.42). Найдем центр тяжести листа.

Рис.42

 

В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

координата так как тело имеет ось симметрии (диагональ).

Пример 4. Проволочная скобка (рис.43) состоит из трёх участков оди­наковой длины l.

Рис.43

 

Координаты центров тяжести участ­ков: , ; , Поэтому координаты центра тяжести всей скобки:

 



©2015- 2018 stydopedia.ru Все материалы защищены законодательством РФ.