Сделай Сам Свою Работу на 5

Числовые характеристики сетевого графика





Курсовой проект

 

 

по курсу «Экономико-математические методы и модели»

 

на тему: «Сетевое планирование в условиях неопределенности. Анализ и оптимизация сетевого графика»

 

 

Выполнила студентка

2 курса очного отделения

специальности 080507

«Менеджмент организации»

Владимирова Регина Олеговна

Проверил: ст. преподаватель

Деревянных Е.А

 

Чебоксары

Содержание

Введение…………………………………………………………………………

1. Сетевое планирование и управление…………………………………..

1.1. Основные элементы сетевого планирования и управления……………

1.2. Числовые характеристики сетевого графика………………………….

1.3. Сетевое планирование в условиях неопределенности……………….

1.4. Анализ сетевого графика………………………………………………

1.5. Оптимизация сетевого графика……………………………….

2. Практическая часть……………………………………………….

Заключение……………………………………………………………………

Список литературы…………………………………………

 


Введение

Актуальность данной работы обусловлена необходимостью грамотного управления крупными народнохозяйственными комплексами и проектами, научными исследованиями, конструкторской и технологической подготовкой производства, новых видов изделий, строительством и реконструкцией, капитальным ремонтом основных фондов путём применения сетевых моделей.



Цель работы — описать и усвоить, что, в общем, представляет собой сетевое планирование и управление (СПУ).

Задачи работы:

-построение сетевой модели и ее основных элементов;

-изучение порядка и правила построения сетевых графиков;

-определение временных параметров событий;

-просмотр сетевого планирования в условиях неопределенности;

-определение временных параметров событий;

-проведение анализа и оптимизации сетевого графика;

-решение задачи, определение всех параметров. Анализ и оптимизация сетевого графика в задаче

Поиски более эффективных способов планирования сложных процессов привели к созданию принципиально новых методов сетевого планирования и управления (СПУ).

Система методов СПУ — система методов планирования и управления разработкой крупных народнохозяйственных комплексов, научными исследованиями, конструкторской и технологической подготовкой производства, новых видов изделий, строительством и реконструкцией, капитальным ремонтом основных фондов путем применения сетевых графиков.



Первые системы, использующие сетевые графики, были применены в США в конце 50-х годов и получили названия СРМ (английская аббревиатура, означающая метод критического пути) и PERT (метод оценки и обзора программы). Система СРМ была впервые применена при управлении строительными работами, система PERT— при разработке систем "Поларис".

В России работы по сетевому планированию начались в 60-х годах. Тогда методы СПУ нашли применение в строительстве и научных разработках. В дальнейшем сетевые методы стали широко применяться и в других областях народного хозяйства. СПУ основано на моделировании процесса с помощью сетевого графика и представляет собой совокупность расчетных методов, организационных и контрольных мероприятий по планированию и управлению комплексом работ.

Система СПУ позволяет:

• формировать календарный план реализации некоторого комплекса работ;

• выявлять и мобилизовывать резервы времени, трудовые, материальные и денежные ресурсы;

• осуществлять управление комплексом работ по принципу "ведущего звена" с прогнозированием и предупреждением возможных срывов в ходе работ;

• повышать эффективность управления в целом при четком распределении ответственности между руководителями разных уровней и исполнителями работ.

Диапазон применения СПУ весьма широк: от задач, касающихся деятельности отдельных лиц, до проектов, в которых участвуют сотни организаций и десятки тысяч людей (например, разработка и создание крупного территориально-промышленного комплекса).



Под комплексом работ (комплексом операций, или проектом) мы будем понимать всякую задачу, для выполнения которой необходимо осуществить достаточно большое количество разнообразных работ. Это может быть и строительство некоторого здания, корабля, самолета или любого другого сложного объекта, и разработка проекта этого сооружения, и даже процесс построения планов реализации проекта.

Для того чтобы составить план работ по осуществлению больших и сложных проектов, состоящих из тысяч отдельных исследований и операций, необходимо описать его с помощью некоторой математической модели. Таким средством описания проектов (комплексов) является сетевая модель.

 

 

 


1. Сетевое планирование и управление

1.1. Основные элементы сетевого планирования и управления

Сетевое планирование и управление — это совокупность расчётных методов, организационных и контрольных мероприятий по планированию и управлению комплексом работ с помощью сетевого графика (сетевой модели).

Под комплексом работ мы будем понимать всякую задачу, для выполнения которой необходимо осуществить достаточно большое количество разнообразных работ.

Для того чтобы составить план работ по осуществлению больших и сложных проектов, состоящих из тысяч отдельных исследований и операций, необходимо описать его с помощью некоторой математической модели. Таким средством описания проектов является сетевая модель.

Сетевая модель — это план выполнения некоторого комплекса взаимосвязанных работ, заданного в форме сети, графическое изображение которой называется сетевым графиком.

Математический аппарат сетевых моделей базируется на теории графов.

Графом называется совокупность двух конечных множеств: множества точек, которые называются вершинами, и множества связей, соединяющих вершины, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т.е. на каждом ребре задается направление, то граф называется ориентированным; в противном случае — неориентированным. Последовательность неповторяющихся ребер, ведущая от некоторой вершины к другой, образует путь.

Граф называется связным, если для любых двух его вершин существует путь, их соединяющий; в противном случае граф называется несвязным.

В экономике чаще всего используются два вида графов: дерево и сеть.

Дерево представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями.

Сеть — это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида «сеть».

В экономических исследованиях сетевые модели возникают при моделировании экономических процессов методами сетевого планирования и управления (СПУ).

Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п.

Основой сетевого планирования и управления является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.Основные понятия сетевой модели:

-событие,

-работа,

-путь.

На рис. 1 графически представлена сетевая модель, состоящая из 11 событий и 16 работ, продолжительность выполнения которых указана над работами.

 

рис. 1.

 

Работа характеризует материальное действие, требующее использования ресурсов, или логическое, требующее лишь взаимосвязи событий. При графическом представлении работа изображается стрелкой, которая соединяет два события. Она обозначается парой заключенных в скобки чисел , где i — номер события, из которого работа выходит, а j — номер события, в которое она входит. Работа не может начаться раньше, чем свершится событие, из которого она выходит. Каждая работа имеет определенную продолжительность t (i,j). Например, запись t (2,5) = 4 означает, что работа (2,5) имеет продолжительность 5 единиц. К работам относятся также такие процессы, которые не требуют ни ресурсов, ни времени выполнения. Они заключаются в установлении логической взаимосвязи работ и показывают, что одна из них непосредственно зависит от другой; такие работы называются фиктивными и на графике изображаются пунктирными стрелками (см. работу (6,9)).

Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени. Событие свершается в тот момент, когда оканчивается последняя из работ, входящая в него. События обозначаются одним числом и при графическом представлении сетевая модель изображаются кружком (или иной геометрической фигурой), внутри которого проставляется его порядковый номер (i = 1, 2, ..., n).

В сетевой модели имеется начальное событие (с номером 1), из которого работы только выходят, и конечное событие (с номером N), в которое работы только входят.

Путь— это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины, например, в приведенной выше модели путями являются = (1, 2, 3, 7, 10, 11), = (1, 2, 4, 6, 11) и др.

Продолжительность пути определяется суммой продолжительностей составляющих его работ. Путь, имеющий максимальную длину, называют критическим и обозначают, а его продолжительность —. Работы, принадлежащие критическому пути, называются критическими. Их несвоевременное выполнение ведет к срыву сроков всего комплекса работ.

Cетевая модель имеют ряд характеристик, которые позволяют определить степень напряженности выполнения отдельных работ, а также всего их комплекса и принять решение о перераспределении ресурсов.

Перед расчетом СМ следует убедиться, что она удовлетворяет следующим основным требованиям:

1. События правильно пронумерованы, т. е. для каждой работы (i, j) i <j (см. на рис. 5.2. работы (4,3) и (3,2)). При невыполнении этого требования необходимо использовать алгоритм пере нумерации событий, который заключается в следующем:

- нумерация событий начинается с исходного события, которому присваивается № 1;

- из исходного события вычеркивают все исходящие из него работы (стрелки), и на оставшейся сети находят событие, в которое не входит ни одна работа, ему и присваивают № 2;

- затем вычеркивают работы, выходящие из события № 2, и вновь находят событие, в которое не входит ни одна работа, и ему присваивают № 3, и так продолжается до завершающего события, номер которого должен быть равен количеству событий в сетевом графике;

- если при очередном вычеркивании работ одновременно несколько событий не имеют входящих в них работ, то их нумеруют очередными номерами в произвольном порядке.

2. Отсутствуют тупиковые события (кроме завершающего), т. е. такие, за которыми не следует хотя бы одна работа (событие 5 из рис. 2);

3. Отсутствуют события (за исключением исходного), которым не предшествует хотя бы одна работа (событие 7);

4. Отсутствуют циклы, т. е. замкнутые пути, соединяющие событие с ним же самим (см. путь (2,4,3)).

рис. 2.

 

При невыполнении указанных требований бессмысленно приступать к вычислениям характеристик событий, работ и критического пути.

 

Числовые характеристики сетевого графика

 

Для событий рассчитывают три характеристики: ранний и поздний срок совершения события, а также его резерв.

Ранний срок свершения события определяется величиной наиболее длительного отрезка пути от исходного до рассматриваемого события, причем , а :

Поздний срок свершения события характеризует самый поздний допустимый срок, к которому должно совершиться событие, не вызывая при этом срыва срока свершения конечного события:

Этот показатель определяется «обратным ходом», начиная с завершающего события, с учетом соотношения

Все события, за исключением событий, принадлежащих критическому пути, имеют резерв :

Резерв показывает, на какой предельно допустимый срок можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ. Для всех работ на основе ранних и поздних сроков свершения всех событий можно определить показатели:

Ранний срок начала— ;

Ранний срок окончания —

Поздний срок окончания —

Поздний срок начала —

Полный резерв времени —

Независимый резерв —

Полный резерв времени показывает, на сколько можно увеличить время выполнения конкретной работы при условии, что срок выполнения всего комплекса работ не изменится.

Независимый резерв времени соответствует случаю, когда все предшествующие работы заканчиваются в поздние сроки, а все последующие — начинаются в ранние сроки. Использование этого резерва не влияет на величину резервов времени других работ.

Путь характеризуется двумя показателями — продолжительностью и резервом. Продолжительность пути определяется суммой продолжительностей составляющих его работ.

Резерв определяется как разность между длинами критического и рассматриваемого путей. Из этого определения следует, что работы, лежащие на критическом пути, и сам критический путь имеют нулевой резерв времени. Резерв времени пути показывает, на сколько может увеличиться продолжительность работ, составляющих данный путь, без изменения продолжительности общего срока выполнения всех работ.

Перечисленные выше характеристики СМ могут быть получены на основе приведенных аналитических формул, а процесс вычислений отображен непосредственно на графике, либо в матрице (размерности ), либо в таблице.

Рассмотрим последний указанный способ для расчета СМ, которая представлена на рис. 1; результаты расчета приведены в табл. 1.

Перечень работ и их продолжительность перенесем во вторую и третью графы табл. 1. При этом работы следует последовательно записывать в гр. 2: сперва начинающиеся с номера 1, затем с номера 2 и т.д.

 

Таблица 1

Расчет основных показателей сетевой модели

 

5=4+3 6=7-3
0,67
0,44
0,67
0,47
0,67
0,78
0,38
0,38
0,67
0,78
0,67

 

В первой графе поставим число , характеризующее количество работ, непосредственно предшествующих событию, с которого начинается рассматриваемая работа.

Для работ, начинающихся с номера , предшествующих работ нет. Для работы, начинающейся на номер , просматриваются все верхние строчки второй графы таблицы и отыскиваются строки, оканчивающиеся на этот номер. Количество найденных работ записывается во все строчки, начинающиеся с номера . Например, для работы (5,8) в гр. 1 поставим цифру 2, так как в гр. 2 на номер 5 оканчиваются две работы: (2,5) и (4,5).

Заполнение таблицы начинается с расчета раннего срока начала работ. Для работ, имеющих цифру «ноль» в первой графе, в гр. 4 также заносятся нули, а их значение в гр. 5 получается в результате суммирования гр. 3 и 4. В нашем случае таких работ только одна — (1, 2), поэтому в гр. 4 в соответствующей ей строке проставим 0, а в гр. 5-0+6=6.

Для заполнения следующих строк гр.4, т. е. строк, начинающихся с номера 2, просматриваются заполненные строки гр. 5, содержащие работы, которые оканчиваются на этот номер, и максимальное значение переносится в гр. 4 обрабатываемых строк. В данном случае такая работа лишь одна (1, 2), о чем можно судить по гр. 1. Цифру 6 из гр. 5 переносим в гр. 4 для всех работ, начинающихся с номера 2, т. е. в три последующие строки с номерами (2, 3), (2, 4), (2,5). Далее для каждой из этих работ путем суммирования их значений гр. 3 и 4 сформируем значение гр.5.:

Этот процесс повторяется до тех пор, пока не будет заполнена последняя строка таблицы.

Графы 7 и 6 заполняются «обратным ходом», т. е. снизу вверх. Для этого просматриваются строки, оканчивающиеся на номер последнего события, и из гр. 5 выбирается максимальная величина, которая записывается в гр. 7 по всем строчкам, оканчивающимся на номер последнего события (см. формулу ). В нашем случае . Затем для этих строчек находится содержимое гр. 6 как разность между гр. 7 и 3 Имеем:

Далее просматриваются строки, оканчивающиеся на номер события, которое непосредственно предшествует завершающему событию (10). Для определения гр. 7 этих строк (работы (5,10), (7,10), (8,10), (9,10)) просматриваются все строчки гр. 6, лежащие ниже и начинающиеся с номера 10.

В гр. 6 среди них выбирается минимальная величина, которая переносится в гр. 7 по обрабатываемым строчкам. В нашем случае она одна — (10,11), поэтому заносим во все строки указанных работ цифру . Процесс повторяется до тех пор, пока не будут заполнены все строки по гр. 6 и 7.

Содержимое гр. 8 равно разности гр. 6 и 4 или гр. 7 и 5 . Гр. 9 проще получить, воспользовавшись формулой.

Учитывая, что нулевой резерв времени имеют только события и работы, которые принадлежат критическому пути, получаем, что критическим является путь

Для оптимизации сетевой модели, выражающейся в перераспределении ресурсов с ненапряженных работ на критические для ускорения их выполнения, необходимо как можно более точно оценить степень трудности своевременного выполнения всех работ, а также «цепочек» пути. Более точным инструментом решения этой задачи по сравнению с полным резервом является коэффициент напряженности, который может быть вычислен одним из двух

где — продолжительность максимального пути, проходящего через работу ;

— продолжительность отрезка рассматриваемого пути, совпадающего с критическим путем.

Коэффициент напряженности изменяется от нуля до единицы, причем, чем он ближе к единице, тем сложнее выполнить данную работу в установленный срок. Самыми напряженными являются работы критического пути, для которых он равен 1. На основе этого коэффициента все работы СМ могут быть разделены на три группы:

-напряженные ;

-под критические ;

-резервные

В результате перераспределения ресурсов стараются максимально уменьшить общую продолжительность работ, что возможно при переводе всех работ в первую группу.

При расчете этих показателей целесообразно пользоваться графиком СМ. Итак, для работ критического пути (1,2), (2,4), (4,5), (5,10), (10,11) . Для других работ:

и т.д.

В соответствии с результатами вычислений Кн для остальных работ, которые представлены в последней графе табл. 5.1, можно утверждать, что оптимизация СМ возможна в основном за счет двух резервных работ: (6,11) и (2,5).


Сетевое планирование в условиях неопределенности

Продолжительность выполнения работ часто трудно задать точно и потому в практической работе вместо одного числа (детерминированная оценка) задаются две оценки — минимальная и максимальная.

Минимальная (оптимистическая) оценка характеризует продолжительность выполнения работы при наиболее благоприятных обстоятельствах, а максимальная (пессимистическая) — при наиболее неблагоприятных. Продолжительность работы в этом случае рассматривается, как случайная величина, которая в результате реализации может принять любое значение в заданном интервале. Такие оценки называются вероятностными (случайными), и их ожидаемое значение toж оценивается по формуле (при бета-распределении плотности вероятности):

 

Для характеристики степени разброса возможных значений вокруг ожидаемого уровня используется показатель дисперсии :

На основе этих оценок можно рассчитать все характеристики СМ, однако они будут иметь иную природу, будут выступать как средние характеристики. При достаточно большом количестве работ можно утверждать (а при малом — лишь предполагать), что общая продолжительность любого, в том числе и критического, пути имеет нормальный закон распределения со средним значением, равным сумме средних значений продолжительности составляющих его работ, и дисперсией, равной сумме дисперсий этих же работ.

Кроме обычных характеристик СМ, при вероятностном задании продолжительности работ можно решить две дополнительные задачи:

1) определить вероятность того, что продолжительность критического пути tкр не превысит заданного директивного уровня Т;

2) определить максимальный срок выполнения всего комплекса работ Т при заданном уровне вероятности р.

Первая задача решается на основе интеграла вероятностей Лапласа Ф(z) использованием формулы:

где нормированное отклонение случайной величины:

— среднее квадратическое отклонение, вычисляемое как корень квадратный из дисперсии продолжительности критического пути.

Соответствие между z и симметричным интегралом вероятностей приведено в табл. 2. Более точно соответствие между этими величинами (когда z вычисляется более чем с одним знаком в дробной части) можно найти в специальной статистической литературе.

При достаточно большой полученной величине вероятности (более 0,8) можно с высокой степенью уверенности предполагать своевременность выполнения всего комплекса работ.

Для решения второй задачи используется формула:

 

 

Таблица 2

Фрагмент таблицы стандартного нормального распределения

 

z Ф z z Ф z
0,1 0,0797 1,5 0,8664
0,2 0,1585 1,6 0,8904
0,3 0,2358 1,7 0,9104
0,4 0,3108 1,8 0,9281
0,5 0,3829 1,9 0,9545
0,6 0,4515 2,0 0,9643
z Ф z z Ф z
0,7 0,5161 2,1 0,9722
0,8 0,5763 2,2 0,9786
0,9 0,6319 2,3 0,9836
1,0 0,6827 2,4 0,9876
1,1 0,7287 2,5 0,9907
1,2 0,7699 2,6 0,9931
1,3 0,8064 2,7 0,9949
1,4 0,8385 2,8 0,9963

 

Кроме описанного способа расчета сетей с детерминированной структурой и вероятностными оценками продолжительности выполнения работ, используется метод статистических испытаний (метод Монте-Карло). В соответствии с ним на вычислительной технике многократно моделируется продолжительность выполнения работ и рассчитывается на основе этого основные характеристики сетевой модели. Большой объем испытаний позволяет более точно выявить закономерность моделируемой сети.

ПРИМЕР. Построение сетевой модели Структура сетевой модели и оценки продолжительности работ (в сутках) заданы в табл. 3. Требуется:

а) получить все характеристики СМ;

б) оценить вероятность выполнения всего комплекса работ за 35 дней, за 30 дней;

в) оценить максимально возможный срок выполнения всего комплекса работ с надежностью 95% (т. е. р=0,95).

Три первые графы табл. 3. содержат исходные данные, а две последние графы — результаты расчетов по формулам Так, например,

 

Таблица 3

 

Работа Продолжительность Ожидаемая продолжительность Дисперсия
 
(1.2) 7.5 0.25
(2.3) 6.5 0.25
(2.4) 1.00
(2.5) 5.5 0.25
(2.5) 5.5 0.25
(3.7) 0.5 3.5 0.36
(4.5) 7.5 0.25
(4.6) 5.5 0.25
(4.9) 1.00
(5.8) 4.5 0.25
(5.10) 1.00
(6.9) 0.00
(6.11) 1.00
(7.10) 1.00
(8.10) 1.00
(9.10) 1.00
(10.11) 10.5 0.25

 

Получим сетевую модель, аналогичную рассмотреннойна рис.1:

рис. 2

Получим сетевую модель, аналогичную рассмотренной на рис.1.Таким образом, ход расчета характеристик модели остается аналогичен рассмотренному ранее. Напомним, что критическим является путь: а его продолжительность равна:

Дисперсия критического пути составляет:

Для использования формулы показателя дисперсии необходимо иметь среднее квадратическое отклонение, вычисляемое путем извлечения из значения дисперсии квадратного корня, т. е. . Тогда имеем:

 

Таким образом, вероятность того, что весь комплекс работ будет выполнен не более чем за 35 дней, составляет 88,5%, в то время как вероятность его выполнения за 30 дней — всего 3,5% .

Для решения второй (по существу обратной) задачи прежде всего в табл. 2.Найдем значение аргумента z, которое соответствует заданной вероятности 95% . В графе Ф(z) наиболее близкое значение (0,9545 100%) к ней соответствует z=1,9. В этой связи в формуле будем использовать именно это (не совсем точное) значение. Тогда получим:

Следовательно, максимальный срок выполнения всего комплекса работ при заданном уровне вероятности р=95% составляет 36,2 дня.


Анализ сетевого графика

После нахождения критического пути и резервов времени работ и оценки вероятности выполнения проекта в заданный срок должен быть проведён всесторонний анализ сетевого графика и приняты меры по его оптимизации. Этот весьма важный этап в разработке сетевых графиков раскрывает основную идею СПУ. Он заключается в приведении сетевого графика в соответствие с заданными сроками и возможностями организации, разрабатывающей проект.

Оптимизация сетевого графика в зависимости от полноты решаемых задач может быть условно разделена на частную и комплексную. Видами частной оптимизации сетевого графика являются: минимизация времени выполнения комплекса работ при заданной его стоимости; минимизация стоимости комплекса работ при заданном времени выполнения проекта. Комплексная оптимизация представляет собой нахождение оптимального соотношения величин стоимости и сроков выполнения проекта в зависимости от конкретных целей, ставящихся при его реализации.

Вначале рассмотрим анализ и оптимизацию календарных сетей, в которых заданы только оценки продолжительности работ.

Анализ сетевого графика начинается с анализа топологии сети, включающего контроль построения сетевого графика, установление целесообразности выбора работ, степени их расчленения.

Затем проводятся классификация и группировка работ по величинам резервов. Следует отметить, что величина полного резерва времени далеко не всегда может достаточно точно характеризовать, насколько напряжённым является выполнение той или иной работы некритического пути. Всё зависит от того, на какую последовательность работ распространяется вычисленный резерв, какова продолжительность этой последовательности.

Определить степень трудности выполнения в срок каждой группы работ некритического пути можно с помощью коэффициента напряжённости работ.

Коэффициентом напряжённости работы называется отношение продолжительности несовпадающих, но заключённых между одними и теми же событиями, отрезков пути, одним из которых является путь максимальной продолжительности, проходящий через данную работу, а другим — критический путь.

Этот коэффициент может изменяться в пределах от 0 (для работ, у которых отрезки максимального из путей, не совпадающие с критическим путём, состоят из фиктивных работ нулевой продолжительности) до 1 (для работ критического пути).

Обратим внимание на то, что больший полный резерв одной работы (по сравнению с другой) не обязательно свидетельствует о меньшей степени напряжённости её выполнения. Это объясняется разным удельным весом полных резервов работ в продолжительности отрезков максимальных путей, не совпадающих с критическим путём.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.