Сделай Сам Свою Работу на 5

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ





13.1. Классификация и основные требования

Теплоизоляционными называют материалы, имеющие теплопро­водность не более 0,175 Вт/(м ·°С) при 25 °С и предназначенные для снижения тепловых потоков взданиях, технологическом оборудовании, трубопро­водах, тепловых и холодильных промышленных установках. Приме­нение таких материалов в конструкциях позволяет весьма существен­но экономить тепловую энергию, дефицитность и стоимость которой постоянно растут.

Теплоизоляционные материалы и изделия классифицируют:

повиду основного исходного сырья (неорганические и органические);

структуре (волокнистые, ячеистые, зернистые, сыпучие);

форме– рыхлые (вата, перлит), плоские (плиты, маты, войлок), фасонные (цилиндры, полуцилиндры, сегменты и др.) и шнуровые (шнуры, жгу­ты);

сжимаемости – мягкие (М), имеющие относительную деформацию свыше 30 % приудельной нагрузке 2 кПа; полужесткие (ПЖ) – соответственно 6-30 %; жесткие (Ж) – не более 6 %. Кроме того, различают изделия повышенной жесткости, имеющие относительную деформацию до 10 % при удельной нагрузке 4 кПа, и твердые – до 10 % при удельной нагрузке 10 кПа;

возгораемости (горючести)– несгораемые, трудносгораемые и сгораемые.



Тепловой поток через пористые строи­тельные материалы представляет собой сумму кондукционного (теплопередача) lт, конвекционного lк и радиационного (излучение) lр потоков. Чем мельче поры и чем их больше, тем меньше теплопроводность изделия (рис. 11). Стремление к замкнутой пористости отличает структуру теплоизоляционных материалов от структуры звукопоглощающих, кото­рые должны иметь определенное количество открытых пор. Это принципиальное отличие необходимо иметь в виду, так как часто для производства теплоизоляционных и звукопоглощающих изделий ис­пользуются одни и те же исходные материалы. Минимальную теплопроводность имеет сухой воздух, заключен­ный в мелких замкнутых порах, в которых практически невозможен конвективный теплообмен, а именно 0,023 Вт/(м ×°С). Теплопроводность скелета материала с аморфной структурой сущест­венно ниже, чем с кристаллической. Таким образом, структура теплоизоляционного материала и изделия должна иметь скелет аморфного строения, предельно насыщенный мелкими замкнутыми порами или тонкими воздушными слоями.



Рис.11. Зависимость теплопроводности от толщины воздушных прослоек  
 
Для теплопроводности имеют огромное значение влажность ма­териала, так как теплопроводность воды равна 0,58 Вт/(м × °С), что в 25 раз выше, чем теплопроводность сухого воздуха, содержащегося в мелких замкнутых порах материала.

В случае замерзания воды в порах теплопроводность льда соста­-

вит 2,32 Вт/(м × °С), что на два порядка выше значения теплопроводно­сти сухого воздуха и в 4 раза больше теплопроводности воды.

На практике используют различные способы созданиявысокопористого строения материала. Для получения материалов ячеистого строения (ячеистые бетоны, пеностекло, пористые пласт­массы) используют способы газовыделения и пенообразования.

Способ высокого водозатворения состоит в применении большого количества воды при получении формовочных масс (например, из трепела, диатомита); последующее испарение воды при сушке и об­жиге формовочных изделий способствует образованию воздушных пор. Этот способ часто сочетается с введением выгорающих добавок (углесодержащих техногенных отходов, древесных опилок и др.).

Создание волокнистого каркаса – основной способ образования пористости у таких материалов, как минеральная вата и изделия из нее, древесно­волокнистые плиты и т.п.

Высокопористое строение закрепляется путем затвердевания или отверждения (соответственно у неорганических и органических материалов).

Теплопроводность – основной качественный показатель теплоизоляционных материалов. По этому показателю они делятся на три класса: класс А – малотеплопроводные – до 0,058 Вт/(м ×°С); класс Б – среднетеплопроводные – 0,058-0,116 Вт/(м ×°С) и класс В – повышенной теплопроводности – не более 0,18 Вт/(м ×°С).



Толщину однородной ограждающей конструкции в зависимости от ее требуемоготер­мического сопротивленияи теплопроводности материала определяют по формуле

d = Rt×l ,

где d – толщина конструкции, м; Rt – термическое сопротивление, (м ×°С)/Вт; l – теплопроводность материала, Вт/(м ×°С).

Теплопроводность материала связана с его плотностью (рис. 12).

 

 

Рис. 12. Зависимость теплопроводности теплоизоляционных материалов
от плотности:

1 – неорганические материалы; 2 – органические материалы

 

 

В настоящее время нормативные требования к энергозащите вновь строящихся и эксплуатируемых зданий значительно повышены. Только высокоэффективные теплоизоляционные материалы плотностью менее 200 кг/м3 и теплопроводностью не свыше 0,06 Вт/(м ×°С) способны обеспечить достаточное снижение энергопотерь в строительстве.

Прочность теплоизоляционных материалов при сжатии срав­нительно невелика – 0,2-2,5 МПа. Основной прочностной характе­ристикой волокнистых материалов (плит, скорлуп, сегментов) яв­ляется предел прочности при изгибе. У неорганических материалов он составляет 0,15-0,5 МПа; у древесных плит – 0,4-2 МПа. Гибкие теплоизоляционные материалы (минераловатные маты, войлок) испытывают на растяжение. Прочность материала должна обеспечивать его сохранность при перевозке, складировании, монтаже и, конечно, в эксплуатационных условиях.

Деформативные свойства теплоизоляционных материалов характеризуются сжимаемостью (в виде относительной деформации в процентах) и гибкостью.

Водопоглощение не только ухудшает теплоизоляционные свойства пористого материала, но также понижает его прочность и долговечность. Материалы с закрытыми порами, например, пеностекло, отличаются небольшим водопоглощением. Для снижения водопоглощения при изготовлении материалов с большой открытой пористостью вводят гидрофобизующие добавки.

Газо- и паропроницаемость учитывают при применении теплоизоляционных материалов в ог­раждающих конструкциях. С одной стороны, теплоизоляция не должна препятствовать возду­хообмену жилых помещений с окружающей средой, происходящему через наружные стены зданий. С другой стороны, теплоизоляцию стен защищают от увлажнения с помощью гидроизоляции, устраиваемой с «теплой» стороны.

Огнестойкость связана со сгораемостью материала, т.е. его спо­собностью воспламеняться и гореть. Сгораемые материалы можно применять только при осуществлении мероприятий по защите от воз­горания.Возгораемость материалов определяется при воздействии тем­пературы 800-850°С и выдержке в течение 20 мин.Предельная температура применения не должна изменять экс­плуатационные свойства материала.

Химическая и биологическая стойкость пористых теплоизоляционных материалов должна препятствовать проникновению в них агрессивных газов и паров, находящихся в окружающей среде. Органические теплоизоляционные материалы и связующие (клей, крахмал) должны обладать биологической стойкостью, т.е. сопротив­ляться действию микроорганизмов, домовых грибов, насекомых (му­равьев, термитов).

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.