Сделай Сам Свою Работу на 5

Тема: s - ЭЛЕМЕНТЫ II ГРУППЫ





Общая характеристика элементов II А группы. Физические и химические свойства щелочноземельных металлов Ca, Sr, Ba ), их бинарных соединений, гидроксидов и солей

Be, Mg, Ca, Sr, Ba, Ra – элементыII А группы, из них Ca, Sr, Ba, Ra – щелочноземельные металлы, т.к. их гидроксиды обладают щелочными свойствами.

Из всех этих элементов только бериллий – является моноизотопным, все остальные полиизотопны. Радий – единственный элемент этой подгруппы, для которого неизвестно ни одного устойчивого изотопа. Все 14 изотопов радиоактивны и среди них наиболее устойчив 226Ra.

Атомы элементов на внешнем электронном уровне имеют по 2 электрона с противоположными спинами. В возбужденном состоянии один из двух внешних электронов занимает р-орбиталь ), за счет чего атомы могут быть двухвалентными.

2s 2p

Be [He] 2s2   Be* [He] 2s1 2p1

 

Радиусы атомов их меньше, чем у атомов щелочных металлов, поэтому потенциал ионизации больше. От Be(Mg) к Ra увеличивается радиус атома и иона, в соответствии с этим усиливаются металлические свойства. Причем они менее выражены, чем у щелочных металлов.

У щелочноземельных металлов – тип металлических структур:Be, Mg – ГПУ (гексагональная плотная упаковка)



Ca, Sr – ГКУ (гранецентрированная кубическая упаковка)

Ba – ОЦКУ (объемно-центрированная кубическая упаковка)

       
   
 
 

 

 


ГПУ ГКУ ОЦКУ

 

Температура плавления и кипения бериллия, а также твердость значительно превосходит остальные элементы подгруппы, это связано с тем, что бериллий образует наиболее прочную кристаллическую решетку. Стандартный электродный потенциал уменьшается сверху вниз, соответственно. Восстановительная активность увеличивается от Ве к Ra, но они менее активные восстановители, чем щелочные металлы.

Незакономерное изменение физических свойств: плотности, температуры плавления, температуры кипения обусловлены существенными различиями в строении пространственных кристаллических решеток.

В свободном состоянии это легкие металлы, тверже щелочных, самый мягкий барий, имеют серебристо-белый цвет.

Для элементов II-A группы характерна степень окисления +2, соединения со степенью окисления +1 – неустойчивы.



Все окисляются на воздухе и бериллий, и магний покрываются плотной пленкой оксидов, защищающей их от воздействий. Но остальные металлы взаимодействуют с кислородом воздуха более энергично, поэтому хранят также как и щелочные.

При нагревании все металлы сгорают на воздухе с образованием оксидов.

При высоких температурах взаимодействуют с азотом, образуя нитриды.

 

Взаимодействуют с водой, вытесняя водород, все кроме бериллия, магний реагирует медленно и только при высоких температурах, а остальные бурно, т.к. в ряду стандартных электродных потенциалов находятся левее водорода.

Магний сначала образует оксид, а затем гидроксид.

Магний покрыт оксидной плёнкой MgO, который растворяется в H2O при нагревании.

 

Гидролиз бинарных соединений (при нагревании)

 

СаS + 2H2O → Ca(OH)2 + H2S↑

Ca3P2 + 6H2O → 3Ca(OH)2 + 2PH3

CaC2 + 2H2O → Ca(OH)2 + C2H2

CaH2 + 2H2O → Ca(OH)2 + 2H2

Ca3N2 + 6H2O → 3Ca(OH)2 + 2NH3

Mg2Si + 4H2O → 2Mg(OH)2 + SiH4

Ca, Sr, Ba легко взаимодействуют с водородом, а Be, Mg – не взаимодействуют.

Наряду с обычными оксидами в отличие от Be и Mg образуют пероксиды

Гидроксиды щелочноземельных металлов – сильные основания (щелочи). Be(OH)2 - aмфолит.

Mg(OH)2 – как основание средней силы хорошо растворяется в кислотах и в растворах солей аммония

.

С ростом ионных радиусов Э2+ в ряду Be-Ba растет растворимость гидроксидов и усиливаются основные свойства в ряду Са(ОН)2 – Sr(OH)2 –Ba(OH)2. Об этом можно судить по значениям образования ЭСО3 в реакции:

 

BeCO3 MgCO3 CaCO3 SrCO3 BaCO3

,кДж/моль 25,1 -38,1 -74,9 -110,0 -128,0



Малорастворимые гидроксиды бериллия и магния получают с помощью реакций обмена между солями этих металлов и щелочами.

MgCl2 + 2KOH → Mg(OH)2↓ + 2KCl

 

Гидроксиды рассматриваемых элементов разлагаются при нагревании.

Из разбавленых кислот (кроме HNO3) эти металлы вытесняют водород

;

разбавленную HNO3 восстанавливают до иона аммония, концентрированную как активные металлы до N2О

 

 

Способы получения

Получение бериллия.

1. Из оксидов, фторидов пирометаллургическим методом, т.е. при высокой температуре (восстановители – CO, C, Mg).

 

2. Электролиз расплавов солей.

Получение магнияиз оксидов восстановлением C и Si

Mg + H2

Ca - электролизом расплавов солей, Sr и Ba- алюмотермией

3

Растворимость солей:

Хорошо растворимы: хлориды, бромиды, иодиды и нитраты.

Плохо растворимы сульфаты (кроме MgSO4), карбонаты, фосфаты, силикаты. Сульфиты – малорастворимы в воде и сильно гидролизуются.

Все соли бария токсичны, применяются в сельском хозяйстве как инсектициды – яды для борьбы с вредными насекомыми (BaCl2, BaCO3).

 

Особенности бериллия

 

Также как литий отличается от элементов I-A группы, Be – отличается от элементов II-А группы.

Атом Ве имеет на предвнешнем электронном уровне только два электрона, в отличие от остальных элементов II-A группы, у которых их по 8. У него наименьший радиус. Поэтому Ве проявляет диагональное сходство с Al.

Ве и его аналоги при нагревании с галогенами образуют галогениды ЭГ2. Их получают также действуя НГ на металл или на Э(ОН)2.

Be + Cl2 → BeCl2

ЭГ2 – кристаллические вещества.

В молекуле BeCl2 в наружном слое 4 электрона. Ве – может быть акцептором электронных пар и образовывает две связи по донорно-акцепторному механизму. Cl – донор электронной пары.

 

 

 

В итоге при конденсации BeCl2 образуются линейные полимерные цепи. Бериллий образует бинарные соединения:

Be + O2 = 2BeO

Be + S BeS

и разлагаются водой

В обычных условиях бериллий не образует простых ионов, как и для алюминия, для него характерны катионные и анионные комплексы, где координационное число Be равно 4 (Кч.Be = 4); в водных растворах не существует иона Be2+ так как он гидратирован.

Также как и алюминий бериллий обладает амфотерными свойствами, растворяется и в кислотах и в щелочах

Be + 2H+ + 4H2O = [Be(H2O)4]2+ + H2

Be + 2OH- + 2H2O = [Be(OH)4]2- + H2

Be пассивируется концентрированной азотной и серной кислотами, но при нагревании реагируют с этими кислотами:

Амфотерный оксид Ве взаимодействует при сплавлении как с кислотными так и с основными оксидами.

(бериллат натрия)

(ортосиликат бериллия).

Как и оксид, амфотерны сульфиды и галогениды бериллия.

BeS + Na2S → Na2BeS2

Кис. осн.

BeS + SiS2 → Be2[SiS4]

Осн. кис.

BeF2 + NaF → Na2[BeF4]

Кис. осн.

BeF2 + SiF4 → Be[SiF6]

Осн. кис.

Амфотерен и гидроксид бериллия

Соль бериллия, образованную слабой кислотой, можно получить только непосредственно соединением элементов, но нельзя получить смешиванием водных растворов, так как идет совместный гидролиз солей.

Все соединения Ве токсичны. С учетом особенностей его свойств, применяется в атомной технике, электронике.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.