Сделай Сам Свою Работу на 5

Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук.





МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ

 

ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ ИНСТИТУТ

 

Кафедра медицинской и биологической физики

 

  Обсуждено на заседании кафедры Протокол №______________2003 г.

ЛЕКЦИЯ 8

по медицинской и биологической физике с основами высшей математики для студентов лечебно-профилактического, медико-диагностического и медико-профилактического факультетов.

Тема: Механические и волновые процессы. Акустика

Время 90 минут

Гомель, 2003 г.


Литература

1. Ремизов А. Н. Медицинская и биологическая физика: Учеб. для мед. спец. Вузов. – М.: Высшая школа, 1999. – 616 с.

2. Ливенцев Н. М. Курс физики: Учеб. для вузов. В 2-х т. – М.: Высшая школа, 1978. – т. 1. - 336 с., т. 2. - 333 с.

3. Волькенштейн М. В. Общая биофизика: Монография - М.: Наука, 1978. – 599 с.

4. Биофизика: Учебник / Тарусов Б. Н., Антонов В. Ф., Бурлакова Е. В. и др. – М.: Высшая школа, 1968. – 464 с.

5. Аккерман Ю. Биофизика: Учебник. – М.: Мир, 1964. – 684 с.

6. Лекционные демонстрации по физике./ Грабовский М. А., Молодзеевский А. Б., Телеснин Р. В. и др. – М.: Наука, 1972. – 639 с.



 

 

Материальное обеспечение.

1. Слайды – 5 шт

2.

Расчет учебного времени

№пп Тема Перечень вопросов Количество выделяемого времени в минутах
Механические и волновые процессы. Акустика.   Ультразвук. Методы получения и регистрации.
Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук.  
Физические основы применения ультразвуковых волн в медицине Ультразвуковая диагностика. Хирургическое и терапевтическое применение ультразвука.  
Эффект Доплера и его применение для неинвазивного измерения скорости кровотока.  
Инфразвук, особенности его распространения. Физические основы действия инфразвука на биологические системы.
Вибрации, их физические характеристики. Ударные волны.

Тема:

Механические и волновые процессы. Акустика

 

Вопрос 1. 10 минут

Ультразвук. Методы получения и регистрации.

 

Ультразвуком называют упругие механические колебания и волны, частота которых превышает 20 кГц, распространяющиеся в форме продольных волн в различных средах. Верхним пределом УЗ частот считают 106 — 107 кГц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит, от агрегатного состояния вещества, в котором распространяется УЗ волна.



Источники и приемники акустических колебаний и ультразвука.

Ультразвук получается с помощью аппаратов, основанных на использовании явлений магнитострикции (при низких частотах) или обратного пьезоэлектрического эффекта (при высоких). Магнитострикция заключается в изменении длины (удлинение и укорочение) ферромагнитного стержня, помещенного в высокочастотное магнитное поле, с частотой изменения направления поля.

 

 
 

 


Рис. 1. Магнитострикционный излучатель УЗ.

1 – волновод, 2 – концентратор звуковой волны, 3 – сердечник, 4 – обмотка магнитострикционного преобразователя, 5 – провода к генератору электрических колебаний.

 

Обратный пьезоэлектрический эффект заключается в изменении размера (удлинение и укорочение) кристаллической пластинки (кварц, сегнетова соль, титанат бария) под действием высокочастотного электрического поля (до 3 мГц).

 

 
 

 


Рис. 2. Пъезоэлектрический излучатель УЗ

 

Электромагнитные излучатели — получение колебаний подвижной механической системой под действием электромагнита, возбуждаемого переменным током 10¸200Гц — 1¸2кГц.

Электродинамические излучатели — взаимодействие магнитных полей неподвижного постоянного магнита и звуковой катушки (или стержня), питаемой переменным током (50 — 5000 Гц).



Существуют также и аэро- и гидродинамические излучатели низкочастотного ультразвука.

Приемники УЗ — электроакустические преобразователи. К ним относятся в первую очередь пьезоэлектрические преобразователи, магнитострикционные, полупроводниковые и пьезополупроводниковые, электростатические приемники и электродинамические.

Термические приемники - для измерения интенсивности УЗ.

Вопрос 2. 20 минут.

Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук.

 

Колебания размеров тела, усиленные путем использования явления резонанса (т.е. когда частота приложенного переменного напряжения совпадает с собственной частотой колебаний пластинки), вызывают в окружающей тело жидкой или газообразной среде продольную упругую УЗ волну.

УЗ волна, как и звуковая, состоит из чередующихся участков сгущения и разрежения частиц среды. Скорости распространения звуковых и УЗ волн примерно одинаковы. Длина УЗ волн значительно меньше длины звуковых волн. В связи с этим УЗ волны от плоского источника распространяются направленным потоком (УЗ луч) и легко фокусируются. УЗ волна имеет значительно большую интенсивность, чем звуковая. Она может достигать порядка нескольких ватт на квадратный сантиметр, а при фокусировке волны в небольшом объеме среды - сотен и тысяч Вт/см3. Если I = 10 Вт/см3, то это в 10000 раз больше силы звука в воздухе от большого оркестра при его максимальном звучании (10-3 Вт/см2).

В зависимости от частоты принято делить ультразвук на 3 диапазона: низкой (1.5.104 – 105 Гц), средней (105 – 107 Гц) и высокой (107 – 109 Гц) частоты.

Биологическое действие ультразвука во многом определяется частотой ультразвуковой волны, а поэтому различается для низкочастотных и высокочастотных ультразвуковых колебаний.

При распространении ультразвуковых колебаний в среде их интенсивность ослабевает (для многих сред обратно пропорционально квадрату расстояния от источника). Потеря энергии происходит вследствие поглощения ультразвуковых колебаний средой, которое зависит от вязкости и теплопроводности среды. УЗ волны особенно высокой частоты, порядка сотен килогерц, сильно поглощаются воздухом, а также отражаются от поверхности раздела твердой или жидкой среды и газа. Поэтому контакт между источником УЗ и облучаемой средой не должен содержать воздушной прослойки. Из биологических сред наименьшее поглощение ультразвуковых волн характерно для жировых тканей. В мышечной ткани поглощение ультразвука вдвое выше, а в сером веществе мозга – в 2 раза больше, чем в белом. Поглощение ультразвука тканями существенно зависит от частоты ультразвуковых колебаний – растет с увеличением частоты. Поэтому низкочастотный ультразвук поглощается тканями слабее, чем высоко- и среднечастотный, а проникает на значительно большую глубину. В среднем, ультразвук частотой 22-44 кГц может проникать на глубину до 16-24 см, в то время как ультразвук частотой 800 кГц – на 7-9 см.

Распространение ультразвуковых колебаний в среде сопровождается возникновением ряда механических, физических(а также и тепловых) и химических эффектов. К первичным физическим эффектам относят переменное движение частиц в направлении распространения ультразвука, на частицы действует переменное акустическое давление.

Для ультразвука большой интенсивности (~ 10 вт/см2) амплитуды смещения частиц и амплитуды их скоростей относительно невелики, но чрезвычайно велика амплитуда ускорений. Амплитуда ускорений может в десятки тысяч и в сотни тысяч раз превосходить ускорение силы тяжести. Амплитуда давлений может иметь величину нескольких атмосфер.

Распространение ультразвука высокой мощности низкой и средней частоты сопровождается явлением, названным кавитацией. С увеличением частоты ультразвуковых колебаний вероятность возникновения кавитации резко уменьшается, в связи с этим высокочастотный ультразвук оказывается менее опасен для биологических объектов (используется в основном для ультразвуковой диагностики).

При распространении УЗ волн большой интенсивности в жидкости в местах разрежения происходит разрыв сплошности среды — возникает кавитационный пузырек. Образующийся в фазе разрежения газовый пузырек довольно быстро захлопывается под влиянием последующего сжатия. Это явление называют акустической кавитацией. Она довольно эффективно трансформирует относительно низкую среднюю плотность энергии звукового поля в высокую плотность энергии, концентрирующуюся в малых объемах внутри и вблизи от захлопывающегося пузырька. Этим обусловлена роль кавитации в возникновении целого ряда УЗ эффектов (возбуждение люминесценции, инициирование химических реакций, деградация полимеров и биомакромолекул, бактерицидное действие, разрушение животных и растительных клеток и их органелл и т.д.), наблюдаемых в интенсивных УЗ полях.

По современным представлениям механизм биологического действия ультразвука протекает по 3 путям:

1. поглощение УЗ на молекулярном уровне и превращение его энергии в тепло, вызывающее необратимые изменения;

2. рассеяние — процесс, зависящий от соотношения размера объекта и длины волны УЗ;

3. кавитация, приводящая к механическим разрывам в структурах, расщеплению молекул воды 2О ® Н + ОН) с образованием реакционно-способных продуктов, которые взаимодействуют с веществами, входящими в состав клеточных оболочек или мембран.

Важно, что результатом кавитационных процессов являются нарушения структуры и полное разрушение структуры биологических объектов: нарушение структуры биомакромолекул ведет к нарушению или потере функции более крупных биообъектов – клеток, органов или организмов. Так, УЗ разрушает многие микроорганизмы, проявляя бактерицидное действие. Поскольку наблюдаемый биологический эффект есть результат взаимодействия физических и биологических факторов, наблюдается зависимость эффективности УЗ от структурных особенностей биологического объекта. Так, при действии УЗ на клетки преобладают механические изменения, а при действии на ткани – основным повреждающим фактором является тепловая энергия. В растворах макромолекул повреждающее действие определяется резонансными факторами и механическим стрессом, появляющимся в результате относительного перемещения молекул и среды, а также благодаря электрохимическим изменениям в самой среде.

Вопрос 3. 15 минут.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.