Сделай Сам Свою Работу на 5

Взаимодействие клеток при иммунном ответе





Иммунный ответ возможен в результате активации клонов лимфоцитов и состоит из двух фаз. В первой фазе Аг активирует те лимфоциты, которые его распознают. Во второй (эффекторной) фазе эти лимфоциты координируют иммунный ответ, направленный на устранение Аг.

Гуморальный иммунный ответ

В гуморальном иммунном ответе эффекторными клетками являются В-лимфоциты. Регуляцию антителообразования осуществляют Т-хелперы и Т-супрессоры.

Вторгшийся в организм Аг поглощается макрофагом и подвергается процессингу — расщеплению на фрагменты. Фрагменты Аг выставляются на поверхности клетки вместе с молекулой MHC. Комплекс «Аг–молекула MHC класса II» предъявляется T‑хелперу (рис. 17‑4).

Ы ВЁРСТКА Вставить рисунок 1704, файл «ПФ Рис 17 04 Распознавание антигена рецептором T лимфоцита»

Рис. 17‑4. Распознавание антигена рецептором T‑лимфоцита. При помощи рецептора Т-лимфоцита Т‑клетка распознает Аг, но только находящийся в комплексе с молекулой MHC. В случае ТH‑клетки в процессе участвует её молекула — CD4, которая свободным концом связывается с молекулой MHC. Распознаваемый Т‑клеткой Аг имеет два участка: один взаимодействует с молекулой MHC, другой (эпитоп) связывается с рецептором Т-лимфоцита. Подобный тип взаимодействия, но с участием молекулы CD8, характерен для процесса распознавания TC‑лимфоцитом Аг, связанного с молекулой MHC класса I.



T‑хелперы

T‑хелпер распознаёт комплекс «Аг–молекула MHC класса II» на цитолемме антигенпредставляющей клетки (рис. 17‑5). Для активации Т‑хелпера специфическое узнавание Т‑хелпером фрагмента Аг на поверхности антигенпредставляющей клетки оказывается недостаточным. Активацию Т‑хелперов обеспечивает взаимодействие молекулы В7 (расположенной на антигенпредставляющей клетке) с молекулой CD28 на Т‑хелпере. Узнавание Т‑хелпером молекул на антигенпредставляющей клетке стимулирует секрецию ИЛ1 (рис. 17‑5). Активированный ИЛ1 T‑хелпер синтезирует ИЛ2 и рецепторы к ИЛ2, через которые агонист стимулирует пролиферацию Т‑хелперов и цитотоксических T‑лимфоцитов. Таким образом, после взаимодействия с антигенпредставляющей клеткой T‑хелпер приобретает способность отвечать на действие ИЛ2 всплеском пролиферации. Биологический смысл этого процесса состоит в накоплении такого количества Т‑хелперов, которое обеспечит образование в лимфоидных органах необходимого числа плазматических клеток, способных вырабатывать АТ против данного Аг.



Ы ВЁРСТКА Вставить рисунок 1106, файл «ПФ Рис 17 05 Взаимодействие клеток при иммунном ответе»

Ы Вёрстка Рисунок 17-05 не вставлен по причине его большого веса (см. Гистология, 2 издание, Рис. 11-6)

Рис. 17‑5. Взаимодействие клеток при иммунном ответе. Рецептор Т‑хелпера распознаёт антигенную детерминанту (эпитоп) вместе с молекулой MHC класса II, выставленные на поверхности антигенпредставляющей клетки. В молекулярном взаимодействии участвует дифференцировочный Аг Т‑хелпера CD4. В результате подобного взаимодействия антигенпредставляющая клетка секретирует ИЛ1, стимулирующий в Т‑хелпере синтез и секрецию ИЛ2, а также синтез и встраивание в плазматическую мембрану того же Т‑хелпера рецепторов ИЛ2. ИЛ2 стимулирует пролиферацию Т‑хелперов и активирует цитотоксические T‑лимфоциты. Отбор В‑лимфоцитов производится при взаимодействии Аг с Fab‑фрагментами IgM на поверхности этих клеток. Эпитоп этого Аг в комплексе с молекулой MHC класса II узнаёт рецептор Т‑хелпера, после чего из T‑лимфоцита секретируются цитокины, стимулирующие пролиферацию В‑лимфоцитов и их дифференцировку в плазматические клетки, синтезирующие АТ против данного Аг. Рецептор цитотоксических T‑лимфоцитов связывается с антигенной детерминантой в комплексе с молекулой MHC класса I на поверхности вирус-инфицированной или опухолевой клетки. В молекулярном взаимодействии участвует дифференцировочный Аг цитотоксического T‑лимфоцита CD8. После связывания молекул взаимодействующих клеток цитотоксический T‑лимфоцит убивает клетку–мишень.



B‑лимфоциты

Активация B‑лимфоцита (рис. 17‑5) предполагает прямое взаимодействие Аг с иммуноглобулином на поверхности B‑клетки. В этом случае сам B‑лимфоцит процессирует Аг и представляет его фрагмент в комплексе с молекулой MHC II на своей поверхности. Этот комплекс распознаёт T‑хелпер, отобранный при помощи того же Аг. В активации В‑клетки участвуют две пары молекул: с одной стороны, специфическое взаимодействие Аг с рецептором (IgM) на В‑лимфоците, а с другой стороны, молекула CD40 В‑клетки взаимодействует с молекулой CD40L на поверхности Т‑хелпера, активирующего В‑клетку. Узнавание рецептором T‑хелпера комплекса «Аг–молекула MHC класса II» на B‑лимфоците приводит к секреции Т‑хелпером ИЛ2, ИЛ4, ИЛ5 и γ-ИФН. Под их действием B‑клетка активируется и пролиферирует, образуя свой клон. Активированный B‑лимфоцит дифференцируется в плазматическую клетку.

Плазматические клетки

Плазматическая клетка синтезирует иммуноглобулины. ИЛ6, выделяемый активированными Т‑хелперами, стимулирует их секрецию. Часть зрелых В‑лимфоцитов после Аг-зависимой дифференцировки циркулирует в организме как клетки памяти.

Клеточный иммунный ответ

В клеточном иммунном ответе эффекторными клетками являются цитотоксические Т-лимфоциты, активность которых регулируют Т-хелперы и Т-супрессоры.

Реакции клеточно-опосредованного цитолиза

Эффекторные клетки при помощи рецепторов распознают клетку–мишень и уничтожают её. Клеточно-опосредованный цитолиз контролируют не только Т-лимфоциты, но и другие субпопуляции лимфоидных клеток, а в некоторых случаях – миелоидные клетки.

Цитотоксические T‑лимфоциты

Предъявленный на поверхности клетки–мишени Аг в комплексе с молекулой MHC класса I связывается с рецептором цитотоксического T‑лимфоцита (TC, рис. 17‑5). В этом процессе участвует молекула CD8 клеточной мембраны TC. Секретируемый T‑хелперами ИЛ2 стимулирует пролиферацию цитотоксических T‑лимфоцитов.

Уничтожение клетки–мишени

Цитотоксический T‑лимфоцит раcпознаёт клетку–мишень и прикрепляетcя к ней. Выделяемые T‑киллером молекулы перфорина полимеризуютcя в мембране клетки–мишени под влиянием Ca2+. Сформированные в плазматической мембране клетки–мишени перфориновые поры пропуcкают воду и cоли, но не молекулы белка. Еcли полимеризация перфорина произойдет во внеклеточном проcтранcтве или в крови, где в избытке имеетcя кальций, то полимер не cможет проникнуть в мембрану и уничтожить клетку. Cпецифическое дейcтвие T‑киллера проявляется только как результат тесного контакта между ним и клеткой–мишенью, который доcтигаетcя за cчёт взаимодейcтвия Аг на поверхноcти жертвы c рецепторами T‑киллера. Cам T‑киллер защищён от цитотокcичеcкого дейcтвия перфорина.

Неспецифическая защита организма

Помимо иммунокомпетентных клеток, в реакциях обнаружения и устранения чужеродных молекулярных и клеточных структур участвуют также клеточные и гуморальные факторы (конституциональные факторы) системы неспецифической защиты организма (см. рис. 17–1). К ним относят фагоцитирующие клетки, факторы системы комплемента, кинины, ИФН, лизоцим, белки острой фазы и некоторые другие.

Факторы неспецифической резистентности подразделяют на физические, химические и иммунобиологические. Основа первых — анатомические барьеры (кожа и слизистые оболочки). Они служат первой линией защиты против возбудителей инфекций. Строение, свойства, секреторные вещества физических и химических барьеров не позволяют микробам попасть во внутреннюю среду организма, часто убивая либо ингибируя их рост (табл. 17–1).

Ы Вёрстка Таблица 17-1

Таблица 171. Некоторые конституциональные защитные барьеры

Ткани или органы Типы клеток Механизмы элиминации микроорганизмов
Физические
Кожа Эпидермис (также многослойный эпителий слизистых оболочек) Механическая задержка, слущивание клеточных слоёв
Слизистые оболочки Каёмчатый эпителий Ингибирование адгезии микроорганизмов
  Мерцательный эпителий Мукоцилиарный транспорт
  Разные виды эпителии Механическая задержка и смывание слюной, слёзной жидкостью, секретами
  Секреторные Выделение секрета, смывающего микробы
Химические
Кожа Потовые и сальные железы Органические кислоты (закисление среды)
Слизистые оболочки Париетальные клетки желудка Соляная кислота (бактерицидное действие)
  Секреторные клетки Бактерицидные и бактериостатические вещества
  Полиморфноядерные лейкоциты Лизоцим, свободные радикалы, лактоферрин
Лёгкие Альвеолоциты Альвеолярные макрофаги Сурфактант Фагоцитоз
Верхний отдел ЖКТ Слюнные железы иоцианаты
  Полиморфноядерные лейкоциты Лизоцим, миелопероксидаза, лактоферрин, катионные белки
Нижний отдел ЖКТ Жёлчь Жёлчные кислоты
  Нормальная микрофлора Токсичные низкомолекулярные жирные кислоты

Механические барьеры

Кожа и слизистые оболочки эффективно защищают организм человека от патогенов. Необходимое условие проникновения многих возбудителей — микротравмы кожи и слизистых оболочек, либо укусы кровососущих насекомых.

Кожные покровы снабжены многослойным эпителием. Эта «линия обороны» подкреплена секретами кожных желёз и постоянным слущиванием отмерших слоёв эпидермиса. Нарушение целостности эпидермиса (например, при травмах или ожогах) — серьёзная предпосылка для микробных инвазий, особенно при контактах с инфицированными субстратами (почва, растительные остатки и т.д.). Следует помнить, что помимо барьерной роли кожа снабжена мощной системой иммунной защиты (лимфоциты, клетки системы мононуклеарных фагоцитов).

Слизистые оболочки могут иметь специальные анатомические структуры (например, реснички в мерцательном эпителии трахеи). Погружённые в слизь реснички формируют волны однонаправленных колебаний и перемещают слизь с заключённые в ней частицами вверх (к выходу их дыхательных путей) по поверхности эпителия (процесс мукоцилиарного транспорта).

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.