Сделай Сам Свою Работу на 5

Направляющие качения, конструкции, область применения, характеристики. Способы регулирования зазора

НАПРАВЛЯЮЩИЕ КАЧЕНИЯ

Направляющие качения имеют хорошие характеристики трения, равномерность и плавность движения при малых скоростях точность установочных перемещенийи длительно сохраняют точ­ность; в них малое тепловыделение, их просто смазывать. Недостат­ками направляющих качения по сравнению с направляющими сколь­жения являются высокая стоимость, трудоемкость изготовления, пониженное демпфирование, повышенная чувствительность к загрязнениям.

Трение качения в направляющих может создаваться при свобод­ном прокатывании шариков или роликов между движущимися по­верхностями, либо применением тел качения с фиксированными осями (рис.51). Наибольшее распространение в металлорежущих станках имеют направляющие со свободным прокатыванием тел качения (рис.51, б, в), так как есть возможность разместить большее число тел качения в зоне контакта и обеспечить необходи­мые жесткость и точность движения. Конструкции без возврата тел качения (рис.51, б) применяют для малых ходов (до 1 м), поскольку тела качения в 2 раза отстают от подвижного узла. Для равномерного размещения на направляющей тел качения служит сепаратор. При большой длине хода используют направляющие с циркуляцией шариков или роликов, которые свободно возвращаются на рабочую дорожку по каналу возврата (рис.51, в).

Материал и конструктивные формы направляющих качения сходны с направляющими скольжения. Однако для направляющих качения необходимы твердые и однородные рабочие поверхности. Чугун применяют сравнительно редко лишь при небольших нагруз­ках. В основном используют стальные закаленные направляющие

Число тел качения zв одном ряду на направляющей не должнобыть меньше 12—16, так как с их уменьшением снижается точность движения. Вместе с тем для загрузки всех или почти всех тел каче­ния внешней силой необходимо соблюдать условия

 

z ≤ q /4; z ≤ Р/9,5√d, (1.15)

где q — нагрузка на единицу длины ролика, Н/мм; Р — нагрузка на один шарик, Н; d —диаметр шарика, мм.

Чрезмерное увеличение количества тел качения приводит к тому, что все большее их число оказывается ненагруженным полностью или частично. При выборе диаметра детали типа тела качения нужно учитывать, что с уменьшением диаметра возрастают силы трения, а с увеличением диаметра увеличиваются размеры направляющих. Жесткость шариковых направляющих возрастает с увеличением диа­метра шариков, а жесткость роликовых направляющих почти не зависит от диаметра роликов. В станкостроении используют корот­кие ролики диаметром 5—12 мм и длинные диаметром 5—20 мм.



Предварительный натяг в направляющих качения устраняет вредное влияние зазоров и обеспечивает повышение жесткости на­правляющих в 2—3 раза. Предварительный натяг может быть полу­чен за счет массы узла и внешней нагрузки. Недостаток этого спо­соба — невозможность выбора оптимальной величины натяга и его регулирования.

В замкнутых направляющих предварительный натяг создают двумя способами: пригонкой размеров или регулировочными устрой­ствами. Первый из них прост конструктивно и обеспечивает высокую жесткость, однако натяг невозможно регулировать в процессе эксплуатации и необходимо выдерживать размеры с большой точ­ностью, так как максимальные величины натяга для шариковых направляющих не должны превышать 7—10 мкм, а для роликовых — 10—15 мкм. Рекомендуемые величины натяга обычно составляют5—6 мкм.

Второй способ лишен этого недостатка, но сложнее конструктивно. Натяг создается либо пружинами, либо за счет регулировочных элементов, которые смещают подвижную деталь. При этом жела­тельно, чтобы на эти устройства во избежание снижения жесткости не действовала основная нагрузка.

Направляющие с циркуляцией тел качения выполняют в основ­ном без сепаратора, со сплошным потоком шариков или роликов. Иногда встречаются конструкции с циркуляцией тел качения, в ко­торых используют сепараторы в виде гибкой цепи. Циркуляция тел качения осуществляется также в опорах (шариковых или роли­ковых), представляющих собой отдельные самостоятельные элементы. Это своего рода подшипники качения прямолинейного движения. На рис. 52 представлена конструкция роликовой опоры Р88, размеры которой определены стандартом станкостроения (табл.21). Эти опоры бывают нормальной Р88, узкой Р88У и широкой Р88Ш

Роликовая опора состоит из направляющей 1, вокруг которой обкатываются ролики 2. Выпадению и боковым смещениям роликов препятствуют обоймы 3, шпонки и пружины. К монтажной поверх­ности подвижных узлов станка опоры крепят винтами и штифтуют.

направляющая; 2 – ролики; 3 – обойма;

 

 

НАПРАВЛЯЮЩИЕ КАЧЕНИЯ

АНАЛИЗ КОНСТРУКЦИИ

Направляющие качения широко применяют в конструкциях станков с ЧПУ. Они обладают следующими преимуществами: обеспечивают при весьма малом коэффициенте трения μ = 0,005 точные перемещения при реверсах, равномерное переме­щение при низких и высоких скоростях; работу без зазоров; вы­сокую жесткости; малое тепловыделение; длительное сохранение точности; простоту смазки. Эти свойства обеспечивают с высокой точностью повторяемость выхода на позицию, что осо­бенно важно для многооперационных станков, возможность высокой точностью повторяемость выхода на позицию, что осо­бенно важно для многооперационных станков, возможность уменьшения мощности двигателей приводов подач, стабильные повышенные точность и долговечность. Направляющие качения лишены основных недостатков направляющих смешанного тре­ния, однако имеют следующие недостатки: высокие затраты на изготовление, так как направляющие качения должны изготов­ляться значительно точнее направляющих смешанного трения; пониженную демпфирующую способность в направлении пере­мещений; могут работать лишь в условиях очень хорошей защи­ты; трудность создания конструкций, воспринимающих значи­тельные опрокидывающие моменты. Направляющие, не имею­щие зазоров (работающие с предварительным натягом), должны изготовляться исключительно с высокой точностью, причем их твердость должна быть не ниже HRC 60.

Направляющие качения конструируют незамкнутыми и замкнутыми. Незамкнутые направляющие применяют только для горизонтального перемещения, при этом разъединению ос­новных сопрягаемых поверхностей препятствует сила тяжести перемещаемого узла или, если вес узла недостаточен, дополни­тельно создаваемая сила (например, с помощью пружин или гидроцилиндра), направление которой совпадает с направлени­ем силы тяжести. Конструктивно незамкнутые направляющие проще замкнутых, но не могут воспринимать больших опроки­дывающих моментов. В этом случае применяют более сложные замкнутые направляющие.

В замкнутых направляющих разъединению основных сопрягаемых поверхностей препятствуют различные жесткие конструктивные элементы, например, планки, или же охваты­вающая форма этих направляющих. В зависимости от исполь­зуемого типа тел качения направляющие делятся на роликовые, шариковые, игольчатые и роликовые на осях.

Различают направляющие; 1) без предварительного на­тяга, в которых натяг осуществляется только весом узла; 2) на­правляющие с частичным предварительным натягом, который создается, например, для исключения зазоров в горизонтальном направлении;3) направляющие с предварительным натягом, в которых натяг создается с помощью специальных устройств.

Направляющие без предварительного натяга применяют в узлах, вес которых обеспечивает прилегание направляющей к телам качения даже при действии наибольших возможных оп­рокидывающих моментов.

Роликовые направляющие без предварительного натяга чаще всего выполняют в виде комбинации плоской и V-образной направляющих.

Наличие V-образной направляющей исключает зазоры в горизонтальной плоскости. При отсутствии ударных нагрузок и хорошей защите направляющие могут изготовляться из чугуна

Одну деталь можно пришабрить и проконтролировать по сопря­гаемой детали. В этом случае необходимо, чтобы диаметр роли­ков на V-образной направляющей, имеющей угол наклона гра­ней 45°, был меньше диаметра роликов на плоской направляю­щей в 1,414 раза. Эти направляющие имеют наименьшую жест­кость из всех других форм направляющих, особенно при дейст­вии боковых сил и моментов в плоскости направляющих. Одна­ко при большом весе перемещающегося узла и значительной длине направляющих их жесткость достаточно велика.

Шариковые направляющие без предварительного натяга выполняются в виде комбинации плоской и призматической на­правляющей на одной детали с двумя призматическими направ­ляющими на другой. Шариковые направляющие должны изго­товляться стальными закаленными, так как чугунные шарико­вые направляющие имеют низкую нагрузочную способность. Требования к точности изготовления углов призм у таких на­правляющих ниже, чем у роликовых направляющих, поэтому изготовлять шариковые направляющие проще, чем роликовые. Жесткость шариковых направляющих ниже жесткости ролико­вых в 1,5-2 раза. Из-за низкой нагрузочной способности шари­ковые направляющие следует применять в узлах, имеющих не­большой вес и нагруженных небольшими силами.

Направляющие качения с предварительным натягом все­гда замкнутые; они не имеют зазоров и могут применяться в уз­лах, на которые действуют значительные опрокидывающие мо­менты. Отсутствие зазоров и повышенная жесткость обуславли­вают предпочтительное применение направляющих с предвари­тельным натягом в высокоточных станках. Однако затраты на изготовление таких направляющих выше затрат на изготовление направляющих без предварительного натяга.

Предварительный натяг в замкнутых направляющих создают двумя способами: пригонкой размеров или регулиро­вочными устройствами. Первый способ прост конструктивно и дает высокую жесткость, однако он имеет недостатки - невоз­можно регулировать натяг в процессе эксплуатации и сложно подгонять требуемый натяг при первоначальной сборке. Второй способ при усложнении конструкции, увеличении размеров и меньшей жесткости лишен данного недостатка.

Для создания натяга с помощью регулировочных уст­ройств одну роликовую опору закрепляют в корпусе неподвиж­но, а противоположную с помощью регулировочного устройства можно перемещать в процессе монтажа (рис.53). В конструкци­ях, где необходима самоустановка опор, рекомендуется приме­нять устройства с пружинами (рис.53, б) или винтами с шарико­выми опорами (рис.53,е), а в конструкциях, где самоустановка необязательна, но важна высокая жесткость - регулировочные устройства с клиньями (рис. 53. в и г).

Натяг в направляющих качения без циркуляции тел ка­чения создается прокладками или перемещением планок регу­лировочными винтами, Для повышения демпфирующей способ­ности в направлении перемещений часто в станках используют комбинированные направляющие, в которых часть поверхно­стей направляющих работает в режиме качения, а часть в режи­ме скольжения, применяют три основных вида комбинирован­ных направляющих качения - скольжения:

1) направляющие, в которых основные поверхности скольжения, а боковые качения (рис.54,а); в таких направляв­ших устранено влияние боковых зазоров;

2) направляющие, в которых основные поверхности ка­чения, боковые - скольжения (рис.54,6);

3) направляющие, в которых основные поверхности скольжения дополнены подпружиненными роликовыми опора­ми (рис. 54, в).

В станках с ЧПУ всех типов широко применяют направ­ляющие, приведенные на рис.54,а. В направляющих тяжелых станков для разгрузки подвижных узлов используют направ­ляющие, приведенные на рис.54,в. На рис.54, д,г представле­ны направляющие для узлов, перемещающихся в вертикальной плоскости (боковые суппорта карусельных станков).

Направляющие качения представляют собой сочетание роликовых опор в сопряжении с термически обработанными стальными накладными планками из цементируемой стали типа 20Х с последующей закалкой до твердости НRСэ 59-63.

В узлах, имеющих большие хода, используют конструк­ции с возвратом тел качения. Для этой цели помимо устройства с замкнутой цепью изготовляют роликовые блоки с возвратом роликов (рис.55,а), получившие в настоящее время очень широ­кое распространение. Средняя часть блока служит направляю­щими; отражатели направляют ролики в канал возврата. Ролики посередине имеют канавку для плоской пружины, которая удерживает ролики от выпадения. Ролики направляются шпон­кой, закрепленной вдоль блока. Односторонние роликовые бло­ки называются танкетками. Применение роликовых блоков уменьшает трудоемкость изготовления направляющих. В по­следнее время выпущены двухсторонние роликовые блоки (рис.55,б) двух размеров (размеры большего блока показаны тонкой линией). Эти роликовые блоки имеют два ряда роликов, расположенных под углом 90° друг к другу и позволяющих осуществлять основное и боковое направление.

 

 

 

 

Размеры к рис.57. Табл.24

 

 

  Типоразмер опоры Размеры, мм   Крепежные винты
  L   B     H     h   c   Q   d   l
Р88-101 М4
Р88-102 М5
Р88-103 М6
P88У-101 25,6 18,7 12,7 20,6 25,4 8,4 М3
P88У-102 38,3 12,5 М4
P88У-103 18,5 М5
Р88Ш-101 33,7 18,7 12,7 28,5 25,4 16,5 М3
Р88Ш-102 46,3 39,2 20,5 М4
Р88Ш-103 58,5 48,5 М5

 

 
 

 


 

 

Один ряд имеет большие ролики 1, другой - меньшие ролики 2. Двухсторонние блоки большого размера воспринимают статическую нагрузку до 12 000 кг рядом больших роликов и 5600 кг рядом меньших роликов; блоки меньшего размера воспринимают нагрузку 6000 и 2800 кг соответственно.

Пример использования блоков для прямоугольных направляющих показан на рис.56.

Отраслевым стандартом определены типоразмеры роликовых опор с циркуляцией тел качения нормальной Р88, узкой Р889и широкой Р881 серий (табл.24).

Опоры серии I унифицированы с опорами серии 9 по длине и высоте, различаются шириной корпуса и длиной роли­ков.

Роликовая опора Р88 (рис.58) состоит из корпуса 1, ро­ликов 2 и двух обойм 6, удерживавших ролики от выпадения. Обоймы прикреплены на корпусе винтами 3 и штифтами 4. Опоры в сборе крепятся к привалочным плоскостям узлов вин­тами 7 и штифтами 5. В работе ролики обкатываются вокруг корпуса 1.

Роликовые опоры разделяют на жесткие опоры 3 (рис.59,а), закрепляемые винтами 2, и поджимные (с упругим натягом) (рис.59,б); их монтируют по одной, две или три на специальных платформах 1 (см. рис.59,а), называемых также монтажными подушками.

Число танкеток зависит от нагрузки и длины хода. В поджимных роликовых опорах обоймы 1 (рис.59,б) танкеток скрепляются винтами 3 с направляющей подушкой 2. С проти­воположной стороны устанавливают палец 7, бурт которого одной стороной упирается в направляющую подушку 2 обоймы и соединяется с ней винтами 6, а другой - опирается на тарельча­тые пружины 8. Тарельчатые пружины поджимают специаль­ными гайками 10, создавая необходимый натяг. На торце мон­тажной подушки устанавливают крепежную пластину 5 с войлочным стирателем 4. Рабочие поверхности (образующие) роли­ковых опор качения должны быть строго параллельны плоско­сти платформы.

Опору качения через канал 9 перед установкой набивают смазкой ЦИАТИМ-201 /ГОСТ 6267-74/. Существует конструк­ция направляющих качения с применением роликовых опор двух типов: на подвижной и неподвижной платформе.

Роликовые опоры, установленные на платформах, следу­ет регулировать и отлаживать под заданную нагрузку. Регули­рование подвижной опоры заключается в нагружении ее соот­ветствующим грузом на контрольной плите до равномерного прилегания, которое измеряется щупом толщиной 0,03 мм. За­тем поворотом гаек 10 (рис.59,6) создают необходимый натяг тарельчатыми пружинами 8, оставляя гарантированный зазор S=0,02..0,03 мм, который измеряют щупом между плоскостью направляющей подушки 2 роликовой опоры и платформой 11. После этого положение резьбовых головок фиксируют специ­альными стопорными винтами. Монтажная схема роликовых опор вертикальных направляющих стойки станка ФП-14 для перемещения каретки по оси Z показана на рис.60. Направляю­щие состоят из накладных стальных планок, термически обра­ботанных (твердостью НRСэ 59-63), зафиксированных по пазу 5, закрепленных винтами 6 и коническими штифтами 3.

Поджимные роликовые опоры устанавливают с каждой стороны планок в виде неподвижных платформ 1, платформы 2 с двумя основными роликовыми опорами располагают по боко­вым поверхностям с противоположной стороны направляющих планок 4.

С боковой стороны правой направляющей планки 4 ук­реплена неподвижная роликовая опора 9, с боковой стороны противоположной направляющей, размещена подвижная роли­ковая опора 8 для осуществления натяга.

Поджимные роликовые опоры в платформах 1 предо­храняют каретку от опрокидывания; их устанавливают так, что­бы зазор между опорой и платформой при проверке щупом в опоре (см.рис.59.) не превышал 0.02-0,03 мм [путем пригонки стальной прокладки 7 (см.рис.60.)]. Затем регулируют ролико­вые опоры 8 и на подвижных клиньях. Натяг клиновой роликовой опоры создается до получения зазора 0,02-0,03 мм между основанием обоймы и поверхностью клина. После этого поло­жение клина окончательно фиксируют стопорным винтом.

Чаще применяют так называемое "узкое" боковое на­правление, когда подвижный орган в боковом направлении за­мыкается на одной направляющей. Пример "узкого" бокового направления см. рис.54. "Узкое" боковое направление в сравне­нии с "широким" облегчает изготовление и контроль направ­ляющих, уменьшает влияние на точность температурных де­формаций.

Основными показателями работоспособности роликовых опор являются нагрузочная способность, жесткость, сопротив­ление движению, плавность перемещения и долговечность.

Нагрузочная способность и долговечность опор опреде­ляются контактной выносливостью рабочих поверхностей кор­пусов и роликов. Допускаемые длительно действующие нагруз­ки (статическая прочность) при долговечности, соответствую­щей пути в 250 км, приведены в табл.25. Жесткость j опор ха­рактеризуется отношением нагрузки к упругому перемещению. При нагрузке менее 5000 Н зависимость упругих перемещений (рис.61, табл. 26) от нагрузки Р имеет нелинейный характер, при больших нагрузках она становится линейной.

Сопротивление движению характеризуется силой, необ­ходимой для перемещений роликовой опоры. Показателем со­противления движению может служить условный коэффициент трения f, равный отношению силы сопротивления движению к нормальной нагрузке на опору. С увеличением нагрузок услов­ный коэффициент трения падает. При нагрузках более 10000Н f=0,001.0,003. Показателем сопротивления движения может служить также минимальный угол наклона плоскости, с которой опора при малых нагрузках безостановочно скатывается. Реко­мендуется проверять перед монтажом качество изготовления опоры качением ее по наклонной плоскости с уклоном 1:30

Для предотвращения неравномерного распределения на­грузок и преждевременного выхода роликовых опор из строя необходимо тщательно выверять при монтаже их положение. Разновысотность опор, установленных в одной плоскости, не должна превышать 3 мкм. Выверку и контроль положения опо­ры производят по торцевой плоскости М (см. рис.57), которая должна быть строго параллельна направлению перемещения узла. Перекос опор в продольной плоскости должен быть не более 10-12 мкм на длине 100 мм, а в поперечном - 3 мкм. Пре­вышение каждой из этих значений в 2 раза сокращает допускае­мую нагрузку на опору также в 2 раза.

Смазку в жидком или пластическом виде нужно пода­вать периодически в канал возврата роликов или на направляю­щие. Для защиты от загрязнений применяют скребки, телеско­пические щитки или раздвижные меха

 

 

Расчет направляющих качения с использованием танкетки производится с учетом упругих деформаций в опорах.

Методика расчета роликовых опор сводится к составлению схемы нагружения механизмов, вычислению рабочих нагрузок от воздействия сил резания, тяжести привода, определению нагрузки на опорах и подбору типоразмера числа опор.

Кроме расчета каждой из опор по нагрузочной способности (статической прочности) следует проверить долговечность опоры на конкретную выносливость Рдоп= Рбаз · Кs , где Рбаз- базовая нагрузка, соответсвующая пределу выносливости и вызывающая усталостное разрушение при базовом пути опоры; Кs- коэффициент, учитывающий длину пути.

См. подробнее

Проектирование направляющих МРС

«Учебное пособие» Ведерников Ю.А., Хусаинов Р.



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.