Сделай Сам Свою Работу на 5

Интегральный признак сходимости Коши





Сумма ряда

Определение суммы ряда.

Выражение вида

называем рядом; -- n-ый член ряда (1). Сумма называется n-ой частичной суммой ряда (1).

Определение 1. Суммой ряда (1) называется предел частичных сумм, если . Итак, сумма ряда (1) есть число

т.е. такое число, что для любого найдется натуральное начиная с которого, т.е. для любого выполняется неравенство

Если существует предел (2), то ряд (1) называется сходящимся. В противном случае, ряд (1) называется расходящимся.

Ряд называется n-ым остатком ряда (1) и обозначается . Таким образом, неравенство (3) эквиваленто следующему неравенству

Задача о вычислении суммы ряда (1) с точностью 𝜺 сводится к поиску такого натурального числа n, что . Тогда с точностью

Примеры. а) 0+0+0+… - сходящийся ряд;

б) 𝜺 +𝜺 +𝜺 +… - расходящийся ряд, какое бы малое положительное число 𝜺 мы не взяли;

в) конечная сумма превращается в сходящийся ряд, если положить при ; при этом сумма данного ряда равна исходной сумме;

г) 1+1/2+1/4+1/8+… сходится к числу 2, ибо имеет пределом 2 при n→ ∞ ;

д) .

Критерий Коши для ряда.Ряд (1) сходится в том и только том случае, если для любого 𝜺 >0 найдется номер N такой, что для любых m≥ n≥ N имеет место неравенство



Предложение. Дописывание или отбрасывание конечного числа слагаемых ряда не влияет на его сходимость (но влияет на его сумму).

Необходимый признак сходимости.

 

Теорема. Если ряд (1) сходится то n-ый член стремится к 0 .

Доказательство. . □

Пример. Гармоническим рядом называется ряд

Для этого ряда но этот ряд расходится, как показывает далее интегральный признак Коши.

Геометрическая прогрессия

- это ряд вида

Число q называется знаменателем геометрической прогрессии.

Теорема 2. Пусть . Тогда геометрическая прогрессия сходится тогда и только тогда, когда |q|<1. В этом случае сумма геометрической прогрессии равна .

Утверждение следует из равенства

Арифметические операции с рядами.

 

Определим сумму двух рядов и как ряд с n-ым слагаемым . Произведение ряда (1) на число l - это ряд .

Теорема. Если ряды и сходятся соответственно к s и t, то сумма этих рядов сходится к числу s+t, а произведение ряда на число l сходится к .



Доказательство вытекает из соответствующих свойств предела

Примеры. Найдем сумму ряда

Заметим, что , и поэтому , т.е. 1 - сумма ряда (1).

Найдем сумму ряда . Для этого разложим n-ое слагаемое следующим образом:

Тогда из результата предыдущего примера вытекает, что сумма нашего ряда равна

Теорема сравнения.

 

Лемма 1. Пусть дан ряд с неотрицательными слагаемыми. Тогда этот ряд сходится тогда и только тогда, когда его частичные суммы ограничены.

Доказательство. Если -- ряд с неотрицательными слагаемыми, то , частичные суммы ряда образуют возрастающую последовательность. Если она, к тому же еще и ограничена, то существование предела , т.е. сходимость ряда следует из теоремы о пределе монотонной ограниченной последовательности (см. главу «Введение в анализ» ). Обратное утверждение вытекает из ограниченности последовательности, имеющей предел. □

Теорема сравнения. Пусть для любого натурального n начиная с некоторого номера. Если ряд сходится, то и ряд сходится. Если же ряд расходится, то ряд также расходится.

Доказательство. Отбрасывая, если надо, первые несколько членов рядов и , сводим доказательство к случаю, когда неравенство выполняется для всех Обозначим через частичные суммы ряда , а через обозначим частичные суммы ряда . Тогда . Сходимость ряда влечет ограниченность сверху последовательности , что в свою очередь дает ограниченность последовательности . По лемме получаем сходимость ряда . Наоборот, если ряд расходится, то ряд не может сходится, ибо в противном случае сходился бы и ряд , что противоречит доказанному выше. □



Следствие. Пусть для любого натурального n, начиная с некоторого номера, и существует отличный от 0 предел отношения . Тогда ряды и ведут себя одинаково в смысле сходимости (либо оба сходятся, либо оба расходятся).

Доказательство. Пусть . По условию . Предположим, что ряд сходится. Выберем . Тогда начиная с некоторого . Отсюда вытекает неравенство . Из сходимости ряда следует сходимость ряда (см. «арифметические операции с рядами»). По теореме сравнения получаем тогда, что и ряд сходится. Предположим теперь, что ряд сходится. Так как (именно в этом месте нужно учесть, что ), то мы можем в рассуждениях выше заменить на , а на и на . Получаем сходимость ряда . □

Интегральный признак сходимости Коши

 

Теорема (интегральный признак сходимости Коши). Пусть - монотонно убывающая, непрерывная и неотрицательная функция при . Положим для натуральных n. Тогда ряд и интеграл ведут себя одинаково в смысле сходимости. При этом имеет место следующая оценка остатка ряда :

Доказательство по сути вытекает из рисунка. Имеем (*). Если ряд сходится, то и ряд сходится по теореме сравнения. Отсюда следует, что интеграл имеет предел при . Из этого вытекает (с учетом монотонности функции ), что существует предел . Это доказывает сходимость интеграла . Наоборот, если последний интеграл сходится и равен , то для любого . Отсюда и из неравенств (*) следует ограниченность частичных сумм ряда. По лемме 1 из параграфа «теорема сравнения» вытекает сходимость ряда . Оценка остатка ряда следует из неравенства (*):

Следствие. Ряд сходится тогда и только тогда, когда . В частности, гармонический ряд расходится.

Доказательство. Применим теорему, беря в качестве функции . Если , то

в силу того, что . Если , то

ибо неограниченно возрастающая функция. В случае из неравенства и уже доказанной расходимости гармонического ряда вытекает расходимость ряда (применяем теорему сравнения). □

Пример. Ряд сходится, ибо . Так как ряд сходится (здесь ), то по следствию теоремы сравнения получаем сходимость исходного ряда.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.