Сделай Сам Свою Работу на 5

Одновременное выполнение двух дел: картирование функционального пространства мозга





Все мы знаем, что определенные виды работ относительно легко выполнять вместе, а другие явно мешают друг другу. Например, многие люди могут одновременно слушать музыку и читать, хотя те же самые люди не способны во время чтения следить за разговором. Интуитивно ясно, что задания, предназначенные для различных областей мозга, при одновременном выполнении служат меньшей помехой друг другу, чем .те задания, которые вовлекают одни и те же области. Тогда, вероятно, можно было бы исследовать характер организации мозга у нормальных людей, наблюдая за тем, как разные работы мешают одна другой.

Именно этот подход избрал Марсель Кинсбурн в ряде интересных работ, направленных на изучение того, что он назвал «функциональным пространством» мозга [32]. Он предполагает, во-первых, что о расстоянии между областями мозга, управляющими различными движениями, можно судить по степени конкуренции или кооперации при попытках выполнить несколько движений одновременно. Он отмечает, что при согласованных движениях две руки действуют лучше, чем рука и нога, но в условиях конкуренции они действуют хуже. Согласно модели Кинсбурна, из этого следует, что область мозга, управляющая рукой, находится ближе к области, управляющей другой рукой, чем к области, управляющей движениями ноги.



Исследования Кинсбурна по картированию функциональных пространств мозга были сосредоточены на наблюдениях за испытуемыми, которые одновременно разговаривали и что-нибудь делали одной из своих конечностей. В одной из первых работ праворуких испытуемых просили удерживать в равновесии

Изучение асимметрий нормального мозга

стержень на указательном пальце руки в двух ситуациях—молча и проговаривая короткие фразы. Результаты показали, что если испытуемый говорил, то правая рука не могла поддерживать равновесие так же хорошо или так же долго, как она могла это делать, если испытуемый молчал. Этого, однако, не наблюдалось при действии левой руки, которая выполняла задание одинаково хорошо в обоих условиях [33].

Хотя между центрами, управляющими речью и движениями любой из рук, нет прямых связей,. Кинсбурн предполагал, что речевые области расположены ближе к центру управления правой рукой, чем к какому-либо из центров управления левой. С точки зрения анатомии это представление вполне обоснованно, если принять во внимание контралатеральное правило (правая рука управляется левым мозгом) и тот факт, что речевые области находятся в левом полушарии. Что замечательно в работе Кинсбурна — это то, что его модель функционального пространства мозга позволила ему предсказать конкурентное взаимодействие речи и балансирования стержня, которое было подтверждено данными опытов.



Более позднее исследование показало, что трудность проговариваемого материала влияет на степень нарушения работы правой руки. Время сохранения равновесия правой рукой при проговаривании более трудного текста было короче, чем при произнесении более легких фраз. Степень трудности словесного материала не влияла на время сохранения равновесия левой рукой. Интересно, что леворукие испытуемые показали сокращение времени сохранения равновесия при работе обеими руками в условиях проговаривания, что согласуется с данными, указывающими на менее выраженную латерализацию вербальных функций у леворуких как особой группы [34].

Такого рода подход был использован также для исследований больных с расщепленным мозгом и детей. В этих исследованиях применяли задачу с ритмическим постукиванием: испытуемого просили с определенной скоростью легко постукивать указательным пальцем одной руки. В одной ситуации испытуемые одновременно с постукиванием выполняли вербальные задания, в другой (контрольной) они постукивали молча. В обеих группах испытуемых нарушение постукивания было сильнее для правой руки [35].



Эксперименты по изучению так называемого функционального пространства мозга довольно тонки и интересны, хотя относительно этого подхода остаются некоторые существенные оговорки. Во-первых, нет какого-либо подтверждения существования функциональных пространств, независимого от исследований, проводившихся для его демонстрации. Если два вида деятельности мешают выполнению друг друга, предполагается, что они ближе в функциональном пространстве, чем те,

Глава Э

которые мешают друг другу меньше или совсем не мешают. Этот тип объяснений слишком замкнут сам на себя, для того чтобы быть убедительным.

Во-вторых, оказалось, что феномены такого типа не так устойчивы, как хотелось бы: было много сообщений о неудавшихся попытках воспроизвести основные результаты. Причины неудач не всегда были ясны, но очевидно, что на результаты этих работ влияет множество факторов.

Третья проблема состоит в том, что определенные разумные предсказания относительно функционального пространства мозга не были подтверждены экспериментально. Например, данные из многих источников указывают на то, что правое полушарие играет решающую роль в пении. Однако пение избирательно не нарушает выполнения задания левой рукой, как это делает проговаривание при работе правой. Почему? Нам нужно ответить на этот и на другие поднятые здесь вопросы, прежде чем мы сможем оценить значение подхода, использующего представление о функциональном пространстве мозга, к исследованию асимметрии.

Резюме

В этой главе мы рассмотрели попытки ученых исследовать различия между полушариями, изучая поведение нормальных людей в особых экспериментальных ситуациях. Этот общий подход называют обычно «поведенческим», поскольку измеряемой величиной здесь является прямо наблюдаемое поведение. В целом, данные хорошо согласуются с картиной межполушарных различий, сложившейся в результате исследований больных с повреждениями мозга и с расщепленным мозгом.

Просматривая историю развития поведенческих исследований латеральности у нормальных людей, мы видели, как открывалась все более сложная картина. Мы видели, что в возникновении асимметрии в поведении могут играть роль факторы внимания. Ясно также, что различия между полушариями не ограничиваются различиями в роде стимулов, для обработки которых полушария лучше приспособлены. Как и в исследованиях больных с расщепленным мозгом, мы видим, что основные различия лежат в стратегии обработки информации в каждом полушарии. Привлекательность работы с нормальными людьми1 несомненна. Во-первых, устраняются ограничения, накладываемые недостаточным числом испытуемых. Во-вторых, работа с неврологически здоровыми людьми дает исследователям большую свободу в изобретении экспериментов разных видов. В-третьих, и это, возможно, самое важное, работа с нормальными испытуемыми -позволяет исследовать асимметрии в той самой системе, деятельность которой пытаются понять — в нормальном человеческом мозгу.

Глава 4

Активность и анатомия: физиологические корреляты функции

Возможно, наиболее прямой путь исследования различий между полушариями состоит в измерении активности самого мозга. Это направление отличается от подходов, обсуждавшихся в гл. 3, где выводы о работе мозга основывались на наблюдениях за поведением в специальных экспериментальных ситуациях. Более прямые измерения мозговой активности снимают необходимость многих предположений, которые делаются в поведенческих исследованиях. Они также дают возможность исследовать особые группы испытуемых, например маленьких детей или животных, которые не в состоянии отвечать таким образом, как этого требуют поведенческие тесты.

Существует много различных способов количественной оценки мозга и его активности. Возможно, наиболее очевидным является измерение величины и формы самих полушарий. Мы можем также посмотреть, есть ли между соответствующими областями полушарий различия на клеточном уровне.

Для осуществления метаболических процессов в нейронах необходимо, чтобы кровь доставляла к тканям мозга кислород и удаляла конечные продукты обмена. Поэтому измерение кровотока на двух сторонах мозга является полезным способом оценки мозговой активности. Можно определять также различия в метаболизме определенных веществ в мозгу, что позволяет провести даже более тонкий анализ активности на каждой стороне. В конечном счете все эти процессы приводят к генерации электрической активности, которую можно зарегистрировать с помощью электродов, наложенных на кожу головы. Так называемые мозговые волны, регистрируемые в различных областях головы, также можно исследовать для оценки различий между полушариями и в пределах каждого из них.

В этой главе мы рассмотрим данные работ, в которых производились такого рода измерения для более прямого изучения активности левого и правого мозга.

Электрическая активность в левом и правом полушарии

В 1929 г. австрийский психиатр Ганс Бергер обнаружил, что с помощью электродов, помещенных на различные точки поверхности головы человека, можно зарегистрировать паттер-

Глава 4

ны электрической активности. Эти паттерны были названы электроэнцефалограммой (ЭЭГ), что буквально означает «электрическая запись мозга». Хотя ЭЭГ отводится от кожи головы, Бергер сумел показать, что часть регистрируемой в ней активности имеет источником мозг, а не просто подкожные мышцы.

Приборы для регистрации ЭЭГ скоро стали обычным предметом оборудования клиник, так как исследователи показали, что таким нарушениям функции мозга, как эпилепсия или опухоли, сопутствуют характерные паттерны электрической активности. Быстро обнаружились также возможности ЭЭГ как инструмента исследования, и были предприняты многочисленные попытки обнаружить ЭЭГ-корреляты личности, интеллекта и поведения.

Использование ЭЭГ для изучения асимметрии

До конца 60-х годов регистрация ЭЭГ производилась через электроды, размещенные в различных точках вдоль макушки или только на одной половине головы. Предполагалось просто, что активность на двух сторонах идентична. В нескольких работах, однако, сообщалось об асимметрии ЭЭГ при расположении электродов на обеих сторонах. Асимметрии, по-видимому, были как-то связаны с предпочтением рук, но не простым способом. Дэвид Гэлен и Роберт Орнстейн из Института нейро-психиатрии Лэнгли Портера были одними из первых исследователей, начавших детально изучать эти асимметрии и связывать их с характером деятельности, осуществляемой испытуемым во время регистрации ЭЭГ.

Обоснование их подхода хорошо изложено в приводимой здесь выдержке из их статьи.

«Хотя работы на расщепленном мозге показали, что вербальная и пространственная познавательные системы могут функционировать независимо, существует немного исследований, которые пытались оценить взаимодействие этих систем у нормальных людей. Мы полагаем, что большинство обычных видов деятельности связано просто с поочередной работой этих систем, а не с их интеграцией... Поэтому у испытуемого, выполняющего вербальную или пространственную задачу, мы ожидали найти электрофизиологические признаки различий в активности соответствующего и не соответствующего задаче полушария [1]».

Они регистрировали ЭЭГ в симметричных точках двух сторон головы при выполнении испытуемыми таких вербальных заданий, как написание букв, или таких пространственных заданий, как сооружение зафиксированных в памяти геометрических фигур из разноцветных кубиков. Результаты анализирова-

Активность и анатомия

лись с точки зрения соотношения между мощностями ЭЭГ правого (П) и ЭЭГ левого (Л) полушарий. Мощность электроэнцефалограммы— это просто количество электрической энергии, генерируемой в единицу времени. Гэлен и Орнстейн обнаружили, что отношение мощностей П/Л в случае вербальных заданий было значительно больше, чем в случае пространственных.

Таким образом, им удалось показать связь между ЭЭГ-ак-тивностью в полушариях и характером работы, выполняемой испытуемым. С первого взгляда, однако, эти результаты представляются прямо противоположными тому, что можно было бы предсказать на основании уже известных соотношений между видами задач и вовлекаемыми полушариями. Написание букв — задача для левого полушария, и она должна вызывать относительно большую активность левого полушария, чем задача на складывание кубиков. Эту «трудность» легко обойти, если рассмотреть структуру ЭЭГ-активности.

Установлено, что ЭЭГ составлена из нескольких различных видов ритмической активности. Первый из открытых ритмов является и самым известным — это альфа-ритм. Альфа-авдив-ность представляет собой ритмические колебания электрической активности, происходящие 8—12 раз в 1 с. Это преобладающая активность, которая присутствует в ЭЭГ, когда испытуемый спокойно отдыхает с закрытыми глазами. Другие ритмы, входящие в состав ЭЭГ, также принято обозначать греческими буквами. Рис. 4.1 показывает виды волн ЭЭГ для 5 различных состояний мозга.-

Анализ результатов Гэлена и Орнстейна показал, что преобладающим ритмом в их записях ЭЭГ был альфа-ритм. Так как альфа-ритм отражает состояние мозга в покое, можно ожидать, что большее участие полушария в выполнении определенного задания сопровождается снижением альфа-активности. Из этого следует, что, если испытуемый выполняет языковое задание, левое полушарие должно показать относи-, тельно меньшую альфа-активность по сравнению с ее количе-. ством при решении пространственной задачи, подобной проблеме создания конструкции из кубиков. Именно это и было об-. наружеио.

Достоинства и недостатки ЭЭГ

Электроэнцефалографические измерения асимметрии пользовались популярностью у многих исследователей по веской причине. Поскольку при этом от испытуемого не требуется внешней реакции, эти измерения можно использовать для изучения асимметрии мозга у детей, а также у больных с афазией и других испытуемых, от которых трудно получить такие ответы. Кроме того, ЭЭГ позволяет оценивать активность непрерыв--

Активность н анатомия

но на протяжении длительного времени, так что ее можно использовать для изучения текущей активности мозга при выполнении испытуемым сложных заданий, требующих много времени.

Хотя последнее свойство ЭЭГ весьма полезно для некоторых исследований, оно ставит определенную проблему перед другими. ЭЭГ отражает общую, непрерывную активность мозга. Поэтому на ЭЭГ трудно увидеть изменения, связанные с появлением определенных стимулов. В самом деле, сложные волны ЭЭГ, по-видимому, не очень сильно изменяются под влиянием различного рода сенсорных входов и отражают, скорее, общий уровень активации мозга.

Вызванный потенциал

Однако тщательный анализ ЭЭГ обнаруживает, что в ответ на предъявление такого стимула, как вспышка света, все же происходят определенные изменения. Проблема состоит в том, что эти изменения маскируются общей фоновой активностью мозга. Для того чтобы сделать изменения в ответ на определенный стимул видимыми, используют компьютер, усредняющий записи волновой активности при повторных предъявлениях того же стимула. Случайная по отношению к предъявлению стимула электрическая активность в результате этого процесса будет нивелироваться, тогда как электрическая активность, возникшая в определенное время после стимула, будет выявляться как потенциал, вызванный стимулом.

Рис. 4.2 показывает, как вызванный потенциал (ВП) выделяется из ЭЭГ при усреднении записей волн, которые следуют за повторными предъявлениями одного и того же стимула. Вызванный потенциал состоит из последовательности положительных и отрицательных отклонений от основной линии и длится обычно около 500 мс после окончания стимула. Каждый по-

Рис. 4.1. Типичный пример электроэнцефалограммы. На схеме головы, приведенной слева от каждой записи, показано примерное расположение электродов.. А. В покое с открытыми глазами. Б. В покое с закрытыми газами. Высокоамплитудные волны, возникающие с частотой 8—12 в 1 с, представляют собой?. альфа-ритм. В. Выраженные пиковые колебания связаны с эпилептическими судорогами. Г. «Гибель мозга», или «гибель коры»; даже если сердце больного-еще, возможно, бьется, ровная линия записи электрической активности указывает на клиническую смерть. Д. Одновременная регистрация ЭЭГ-активности в левой и правой височных областях при выполнении испытуемым задачи на создание определенной конструкции из кубиков. Графики справа от каждой из кривых ЭЭГ представляют собой анализ относительной «мощности» различных частот в ЭЭГ. Обратите внимание, что левая запись содержит больше альфа-активности, что видно по пику на графике^ соответствующему частоте 8—12 в 1 с. Во время речи или письма большая альфа-активность регистрируется на правой стороне. Степень и направление асимметрии изменяется в зависимости от выполняемой испытуемым задачи {1].

Глава 4

Рис. 4.2. Вызванный ответ выявляется из фоновой ЭЭГ путем усреднения кривых, полученных при повторной стимуляции. Момент подачи стимула (щелчок) отмечен стрелкой. А. ЭЭГ-реакция на одиночный стимул. Б. Усреднение двух реакций. В. Усреднение 16 реакций. Г. Усреднение 64 реакций.

тенциал можно проанализировать в плане компонентного состава или таких параметров, как амплитуда и латентность (интервал времени от начала стимула до начала активности).

Одним из факторов, влияющих на форму вызванного потенциала, является природа стимула. В целом, слуховые вызванные потенциалы отличаются от зрительных, которые в свою очередь отличаются от потенциалов, вызванных тактильным раздражением. Кроме того, области каждого полушария, генерирующие максимальную активность, для каждого вида стимулов различны. Рис. 4.3 показывает некоторые ВП, характерные для стимулов различных модальностей.

Первостепенный интерес для нас представляет вопрос о том, одинаковы ли вызванные стимулом потенциалы, если регистрация производится от симметричных областей двух сторон головы. Есть ли между полушариями различия в электрической активности, вызываемой разными стимулами, и если есть, то что они могут нам сказать о роли левого

и правого мозга у нормальных людей?

В ряде работ регистрировали ВП от каждого полушария в условиях предъявления испытуемым таких простых стимулов, как щелчки или вспышки света [2]. В некоторых из этих работ обнаружены асимметрии в амплитуде или латентности ВП. Значительно больший интерес, однако, представляют исследования, в которых испытуемым предъявляли более сложные стимулы или задачи, предположительно связанные со специализированными функциями полушарий.

Активность и анатомия

Рис. 4.3. Типичные вызванные потенциалы на слуховое (А), соматосенсорное (Б) и зрительное (В) раздражения. Прерывистыми линиями указаны области кожи головы, от которых регистрируются наиболее выраженные пики (Bioelectric Recording Techniques. Part В. Eds. Thompson R. F., Patterson M., 1973.)

Например, в работе Монти Башбаум и Пола Федио из Национальных институтов здоровья наблюдались различия в ВП, когда испытуемые смотрели на вербальные и невербальные стимулы, вспыхивающие в левой или правой половине поля зрения [3]. Вербальными стимулами были слова из трех букв, а невербальными — бессмысленные сочетания букв. Результаты регистрации от затылочных долей показали, что различия в ВП на эти два типа стимулов в левом полушарии больше, чем в правом.

Асимметрии были описаны также при использовании слуховых стимулов. Психолог Деннис Молфиз собрал обширный материал по вызванным потенциалам на речевые и неречевые стимулы [4]. В одной из работ он обнаружил, что амплитуда некоторых компонентов ВП на речевые стимулы в левом полушарии больше, чём в правом. Это различие было заметно даже в тех случаях, когда испытуемый просто слушал звуки и не пытался их идентифицировать. Неречевые стимулы, однако, вы-

Глава А

звали более высокоамплитудную активность в правом полушарии.

В нескольких работах проверяли также, как влияет на асимметрии задание, которое испытуемый выполняет во время регистрации ВП. В одной из таких работ испытуемым предъявляли последовательность искусственно созданных слогов, которые могли различаться по начальной согласной («ба» и «да») или по высоте звучания (высокая или низкая) [5]. В половине проб испытуемым давали инструкцию уловить каждое появление «ба», независимо от высоты его звучания. В остальных случаях испытуемым давали инструкцию уловить высоко звучащие слоги, независимо от их названия.

В каждом случае в левом и правом полушарии регистрировали вызванные потенциалы при подаче высоко звучащего «ба». Эта методика позволила исследователям изучать влияние выполняемого задания на асимметрию ВП, используя в двух ситуациях те же самые стимулы. Единственное различие между ситуациями заключалось в характере умственной работы, которую испытуемые должны были произвести при предъявлении стимулов.

Результаты показали различия в ВП, возникавших при выполнении разных заданий, но только в левом полушарии. Вызванные потенциалы, регистрируемые в правом полушарии, не отличались в двух этих ситуациях. Эти данные позволили исследователям предположить, что межполушарные различия существуют в отношении способности идентифицировать звуки, но отсутствуют в отношении способности определять высоту звуков.

В другой работе регистрировали ВП на простые вспышки света при выполнении испытуемыми пространственных или лингвистических заданий, подобных тем, которые использовали Гэлен и Орнстейн в своей работе с регистрацией ЭЭГ, что позволило исследователям сравнить значение ВП и ЭЭГ как показателей латерализации умственных функций. Результаты обнаружили, что и ВП, и ЭЭГ отражают асимметрии в активности мозга, но ЭЭГ дает более адекватные показатели.

Электрическая активность и асимметрия: резюме

Начальный успех в исследовании латерализации с применением в качестве критериев ЭЭГ и вызванных потенциалов вдохновил многих исследователей на использование этой методологии. К сожалению, некоторые из последующих работ скорее запутали, чем прояснили взаимоотношения между этими показателями и межполушарной асимметрией. Попытки повторить результаты часто терпели неудачу, а исследователи, выявившие асимметрию, не всегда могут договориться о том, какой аспект

Активность и анатомия___________________________;____________________10£

записи электрической активности свидетельствует об асимметрии. Например, недавняя работа, в которой исследовались ВП на вспышку света при выполнении испытуемыми пространственных и вербальных заданий, не обнаружила каких-либо убедительных свидетельств асимметрии [7].

Почему так много работ противоречат друг другу? Значительный вклад в это внесли несоответствия в планировании экспериментов, их проведении и методах анализа. Проблемы возникают из-за неразумного выбора вида измеряемой электрической активности, отсутствия контроля за индивидуальными различиями между испытуемыми, из-за использования задач, которые на самом деле не обеспечивают избирательного вовлечения полушарий [8].

Анализ этих трудностей легко приводит к заключению о том, что преждевременно пропагандировать использование регистрации ЭЭГ и ВП в качестве безоговорочных критериев межполушарной асимметрии. Результаты слишком противоречивы. Вместе с тем среди всех несоответствий выявляется целый ряд положительных данных, которые нельзя игнорировать. Эти критерии обладают большими возможностями, но эти возможности еще предстоит реализовать.

Кровоток в полушариях

Кровоток в тканях тела изменяется в зависимости от уровня метаболизма и активности в этих тканях. Кровоток, который обеспечивает доставку к тканям необходимых питательных веществ и удаление конечных продуктов обмена, оказывается весьма чувствительным и реагирует на самые незначительные изменения в активности клеток. И действительно, изменение активности в различных областях мозга отражается, очевидно, в относительном количестве крови, протекающей через эти области. Это открытие дало возможность выявлять и исследовать взаимодействие различных областей мозга человека в процессе поведения, измеряя изменения кровотока в той или иной области.

Современные методики измерения кровотока у бодрствующего и выполняющего какие-либо действия человека были разработаны Нильсоном Лассеном, Дэвидом Ингваром и другими [9]. Они вводили в кровь, направляющуюся к мозгу, радиоактивный изотоп (ксенон-133) и наблюдали за током крови с помощью специальных детекторов, располагаемых вблизи от поверхности головы. Низкий уровень гамма-излучения, испускаемого этим изотопом, считается безвредным; изотоп вымывается током крови за 15 мин. Методика, первоначально использовавшаяся для больных, нуждающихся в обследовании по ме-

108___________________________________________________ Глава i

дицинским показаниям, была с тех пор усовершенствована так, что испытуемый вдыхает специальную смесь воздуха с ксенот ном, а интенсивность кровотока регистрируют с помощью специального детектора.

Результаты множества работ, в которых измеряли кровоток в мозгу во время различного рода физической и умственной деятельности, были весьма впечатляющими. «Возродились» классические предсказания относительно областей мозга, связанных с психическими функциями. В областях каждого полушария, участвующих в зрении, например, наблюдается усиление кровотока, если испытуемый смотрит на объект. Речевые стимулы увеличивают кровоток в слуховых областях каждой стороны мозга.

Хотя наиболее сильные изменения в характере кровотока наблюдаются в пределах целого мозга в передне-заднем направлении, были также обнаружены различия. и между полушариями. Используя методики, которые позволяют исследовать регионарный кровоток в двух полушариях одновременно, Ял Рисберг сравнивал характер кровотока у праворуких мужчин, добровольно согласившихся на обследование, во время выполнения двух задач — теста на вербальные аналогии и теста на перцептивное заполнение пробелов. В такой задаче испытуемые должны были рассмотреть картинки, содержащие отдельные фрагменты, и понять, что на них нарисовано [10].

В этих двух ситуациях были обнаружены небольшие (около 3%), но достоверные межполушарные различия в кровотоке. Как и ожидалось, средняя величина кровотока в левом полушарии была больше при выполнении задачи на вербальные аналогии, а средняя величина кровотока в правом полушарии была больше при выполнении задачи на мысленное завершение рисунков. Рисбергу удалось оценить, какая из областей каждого полушария вносит наиболее значительный вклад в межполушарные различия кровотока. Для вербальных тестов самые большие различия были обнаружены в лобной, лобно-височной и теменной областях. В состоянии покоя различия между соответствующими областями полушарий были незначительными.

Исследователи кровотока Лассен и Ингвар сообщают, что, несмотря на наблюдавшиеся ими межполушарные различия, наибольшее впечатление на них произвело поразительное сходство в характере кровотока на двух сторонах мозга даже при таком высоколатерализованном виде деятельности, как речь [11]. Межполушарные различия в активности являются, по-видимому, намного более тонкими, чем изменения, которые происходят в обоих полушариях. Это наводит на мысль о том, что межполушарные различия отражают только одну из нескольких различных схем организации мозга. Исследование мозгового

Активность и анатомия ___ ___ 109

кровотока показывает, что сложные задачи обычно вызывают повышение активности во многих областях обоих полушарий.

Метаболизм мозга: возможности его количественной оценки

Методики измерения мозгового кровотока имеют на самом деле ряд недостатков, ограничивающих использование получаемых с их помощью данных в качестве критериев активности мозга. Существующие на сегодняшний день системы измерения кровотока не дают точной информации о глубоких областях мозга. Большинство наблюдаемых характеристик относится к коре. Необходимы такие методики, которые позволяли бы анализировать также активность в более глубоко расположенных структурах. Кроме того, возможно, что кровоток не реагирует в достаточной мере на быстрые изменения активности мозга. По этим причинам разрабатываются более тонкие методы, позволяющие прямо измерять интенсивность метаболизма.

Метаболизм мозга на микроуровне можно наблюдать путем измерения скорости утилизации меченой радиоактивной глюкозы или других питательных веществ в разных областях мозга. Слабое излучение, испускаемое этими веществами, измеряют на поверхности головы под разными углами и анализируют с помощью компьютера, для того чтобы получить картину распределения источников излучения в мозгу.

Было показано, что интенсивность метаболизма в небольших областях мозга изменяется соответствующим образом при определенных видах поведенческой активности [12]. Многие исследователи возлагают большие надежды на использование таких методик для установления точных отношений между активностью мозга и поведением, а также для выявления сходства и различий между двумя полушариями. Возможности представляются безграничными, особенно в свете того, что подобные методики позволяют оценивать метаболические процессы в мозгу во время активного поведения.

Вопросы, возникающие при разработке методик измерения активности мозга

Электрофизиологические измерения, исследования регионарного кровотока и другие измерения интенсивности метаболических процессов дают исследователям возможность изучать взаимоотношения между активностью мозга и поведением. Они сыграли важную роль в физиологической оценке правильности некоторых представлений о функциях мозга, основанных на психологических исследованиях больных с повреждениями мозга и нормальных людей.

Глава 4

В то же время измерения активности мозга в поведении подняли некоторые вопросы относительно в высшей степени преувеличенных представлений о межполушарной асимметрии. Мало что поддерживает идею о включении либо одного, либо* другого полушария для выполнения определенной работы целиком им одним. Каждый из показателей, рассматривавшихся нами, указывает на вовлечение многих областей мозга в выполнение даже самых простых заданий. Асимметрии в активности полушарий, конечно, существуют, но они могут быть очень тонкими; этот факт должен предостеречь нас от чрезвычайно упрощенных представлений о специализации полушарий.

Структурные (анатомические) асимметрии двух полушарий

Норман Гешвинд и Вальтер Левицкий в работе, относящейся к 1968 г., показали наличие явных анатомических асимметрий двух полушарий человеческого мозга в областях, важных для речи и языка [13]. Их статья, опубликованная в журнале,, популярном среди ученых различных специальностей, вызвала большое волнение у тех, кто интересуется проблемами межполушарной функциональной асимметрии.

Гешвинд и Левицкий не были, однако, первыми исследователями, которые обратили внимание на такие асимметрии в мозгу. Об асимметриях время от времени сообщалось, начиная еще со второй половины XIX в. В то время различия считали незначительными и недостаточными по величине для того, чтобы они могли отвечать за функциональные различия между левым и правым мозгом.

В конце 60-х годов XX в., однако, пришло время пересмотреть возможность существования функциональных асимметрий между полушариями на анатомическом уровне. После публикации статьи Гешвинда и Левицкого проблему исследовал ряд других ученых, которые расширили поиск асимметрий исследованиями на новорожденных и приматах.

Здесь мы рассмотрим данные, указывающие на асимметрии мозга взрослого человека. Обсуждение работ на новорожденных и приматах мы отложим до 7-й и 8-й глав соответственно.

Результаты измерений

Асимметрия, обнаруженная Гешвиндом и Левицким, касалась длины височной плоскости, занимающей верхнюю поверхность височной доли позади слуховой коры. В 65 из 100 измеренных посмертно экземпляров мозга более длинной оказалась височная плоскость в левом полушарии, в 11 — в правом, а в остальных 24 различий не наблюдалось. В среднем левая ви-

Активность и анатомия

Рис. 4.4. Анатомические асимметрии в коре мозга человека. А. Сильвиева борозда, обозначающая верхнюю границу височной доли, поднимается более круто на правой стороне мозга. Б. Височная плоскость, занимающая верхнюю поверхность височной доли, обычно намного больше слева. Эта область в левом полушарии считается частью зоны Вернике — области, связанной с восприятием речи (Geschwind N. Specializations of the Human Brain. Scientific American, 1979).

сочная плоскость была на одну треть длиннее правой. Рис. 4.4 показывает расположение этой асимметрии.

Хотя производит впечатление величина этих асимметрий, наиболее существенной является их локализация. Височная плоскость составляет часть зоны Вернике — области, названной по имени Карла Вернике, который первым обратил внимание на то, что повреждение этой области часто приводит к различным афазическим симптомам. Гешвинд и Левицкий предположили, что наблюдавшиеся асимметрии сопоставимы с функциональными асимметриями, которые, как полагают, контролируются этой областью.

Несколько работ, в которых для измерения височной плоскости использовались различные методики, подтвердили наблюдения Гешвинда и Левицкого [14]. Были описаны результаты прямых измерений 337 экземпляров мозга (включая 100 экземпляров, исследованных Гешвиндом и Левицким). В 70% была выявлена асимметрия, связанная с большей длиной или площадью височной плоскости в левом полушарии.

Глава 4

Измерения на живом мозге

Анатомические исследования, рассматривавшиеся до сих пор, включали измерения, проведенные при посмертном изучении мозга. Другие данные указывают на то, что асимметрии можно найти также в живом мозгу.

Одна из методик использует то обстоятельство, что пути крупных кровеносных сосудов мозга отражают анатомическое строение окружающих тканей. В частности, средняя мозговая артерия проходит через необходимую для языковой функции область височной доли. В течение многих лет невропатологи пользовались церебральной ангиографией для визуализации этого крупного кровеносного сосуда с тем, чтобы определить наличие повреждений в окружающих его тканях. Рентген-контрастное вещество, введенное во внутреннюю сонную артерию на шее (та же артерия используется в тесте Вада), попадает с током крови в среднюю мозговую артерию и делает ее видимой на рентгенограмме. Марджори Ле Мэй и ее коллеги получили данные, указывающие на то, что лево-правосторонние асимметрии, соответствующие асимметриям, обнаруженным при посмертных измерениях мозга, можно наблюдать с помощью ан-гиографической методики [15].

Вторая методика, используемая для измерения асимметрии в живом мозгу, — это компьютерная томография. В установке, предназначенной для томографии, источник рентгеновских лучей вращается в одной плоскости вокруг головы, тогда как детекторы постоянно регистрируют интенсивность проходящего сквозь голову излучения. Компьютер накапливает информацию и затем использует ее для реконструкции изображения среза мозга. Путем простого регулирования величины угла, под которым идут рентгеновские лучи, можно получить изображение сечения мозга любой плоскостью. Рис. 4.5 иллюстрирует методику томографического исследования. Эта методика в течение нескольких лет использовалась для выявления локализации повреждений мозга. Ле Мэй и ее коллеги активно изучали возможность использования данных компьютерной томографии для исследования асимметрий и добились определенного успеха [16].

О чем говорят нам анатомические асимметрии?

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.