Сделай Сам Свою Работу на 5

Диодно-транзисторная логика (ДТЛ)





Диодная логика, схемы ДТЛ, ТТЛ, ТТЛ Шоттки, ЭСЛ

Диодно-транзисторная логика (ДТЛ), англ. Diode–transistor logic (DTL) — технология построения цифровых схем на основебиполярных транзисторов, диодов и резисторов. Своё название технология получила благодаря реализации логических функций (например, 2И) с помощью диодных цепей, а усиления и инверсии сигнала — с помощью транзистора (для сравнения см.резисторно-транзисторная логика и транзисторно-транзисторная логика).

Упрощённая схема двухвходового ДТЛ-элемента 2И-НЕ.

Диодно-транзисторная логика (ДТЛ)

Наиболее простой логический элемент получается при помощи диодов. Схема базового логического элемента диодной логики приведена на рисунке 1.


Рисунок 1. Принципиальная схема базового логического элемента "2И", выполненного на диодах

В схеме базового логического элемента на диодах при подаче нулевого потенциала на любой из входов (или на оба сразу) через резистор R1 будет протекать ток, и на его сопротивлении возникнет падение напряжения. В результате на выходе схемы базового логического элемента будет присутствовать единичный потенциал только если подать единичный потенциал сразу на оба входа микросхемы. То есть приведенная схема базового логического элемента реализует функцию "2И".



Количество входов логического элемента "И" зависит от количества диодов. Если использовать два диода, то получится логический элемент "2И", если три диода — то логический элемент "3И", если четыре диода, то логический элемент "4И", и так далее. В микросхемах средней интеграции выпускается максимальный логический элемент "8И".

Приведенная схема логического элемента "И" обладает таким недостатком, как смещение логических уровней на ее выходе. Напряжение нуля и напряжение единицы на выходе схемы выше входных уровней на 0.7 В. Это вызвано падением напряжения на входных диодах. Скомпенсировать это смещение уровней можно диодом, включенном на выходе схемы диодного логического элемента, как это показано на рисунке 2.


Рисунок 2. Принципиальная схема усовершенствованного логического элемента "2И", выполненного на диодах



В этой схеме логического элемента логические уровни на входе и выходе схемы одинаковы. Более того, схема логического элемента, приведенная на рисунке 2, будет нечувствительна не только к входным напряжениям, большим напряжения питания схемы, но и к отрицательным входным напряжениям. Диоды выдерживают напряжение до сотен вольт. Поэтому такая схема до сих пор используется для защиты цифровых устройств от перегрузок по напряжению, возникающих, например, в цепях, выходящих за пределы устройства. Естественно, что для защиты одного входа достаточно одного диода на входе элемента. В результате получается только схема защиты без логической функции "И".

К сожалению приведенные схемы логических элементов не могут каскадироваться, так как мощность сигнала при распространении по схеме уменьшается. Поэтому к схеме диодного логического элемента "И" обычно подключается двухтактный усилитель на биполярных транзисторах. Схема такого логического элемента приведена на рисунке 3.


Рисунок 3. Принципиальная схема базового логического элемента ДТЛ микросхемы

Усилитель, использованный в схеме на рисунке 3, позволяет вырабатывать как втекающий, так и вытекающий выходной ток. Тем не менее следует помнить, что это источник напряжения, и если не ограничить выходной ток микросхемы, то можно вывести ее из строя.

Приведенный на рисунке 3 логический элемент используется в таких современных сериях микросхем как 555, 533, 1531, 1533. Да, да! Не следует удивляться тем, кто привык считать эти микросхемы ТТЛ микросхемами. Микросхемы приведенных серий ведут себя как ТТЛ микросхемы (обладают входными и выходными токами, совместимыми с ТТЛ микросхемами и воспринимают не ДТЛ, а ТТЛ логические уровни), но при этом внутри они реализованы по схеме ДТЛ логических элементов. В приведенных сериях цифровых микросхем для повышения быстродействия применяются транзисторы и диоды Шоттки.



Обратите внимание, что транзистор VT1 инвертирует сигнал на выходе элемента "И". В результате вместо логической 1 на выходе присутствует логический 0. И наоборот, вместо логического нуля на выходе присутствует логическая единица, а схема в целом реализует логическую функцию "2И-НЕ":

Условно-графическое изображение ДТЛ логического элемента "2И-НЕ" показано на рисунке 4, а таблица истинности приведена в таблице 1


Рисунок 4. Условно-графическое изображение логического элемента "2И-НЕ"

Таблица 1. Таблица истинности схемы, реализующей логическую функцию "2И-НЕ"

x1 x2 F

На основе базового элемента ДТЛ строится и инвертор. В этом случае на входе используется только один диод. Схема ДТЛ инвертора приведена на рисунке 5.


Рисунок 5. Принципиальная схема инвертора ДТЛ микросхемы

В состав современных серий микросхем кроме логических элементов "И" входят логические элементы "ИЛИ". В схеме логического элемента "ИЛИ" транзисторы VT2 соединяются параллельно в точках "а" и "б", показанных на рисунке 3, а выходной каскад используется один. Схема логического элемента "2ИЛИ-НЕ" приведена на рисунке 6.


Рисунок 6. Принципиальная схема логического элемента "2ИЛИ-НЕ" ДТЛ микросхемы

Схемы "ИЛИ-НЕ" в этих сериях микросхем имеет обозначение ЛЕ. Например схема К555ЛЕ1 содержит в одном корпусе четыре элемента "2ИЛИ-НЕ". Таблица истинности, реализуемая этой схемой, приведена в таблице 2, а условно-графическое изображение логического элемента показано на рисунке 7.


Рисунок 7. Условно-графическое изображение элемента "2ИЛИ-НЕ".

Таблица 2. Таблица истинности схемы, выполняющей логическую функцию "2ИЛИ-НЕ"

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.