Сделай Сам Свою Работу на 5

Стандартизация как упорядочение и нормирование.





 

Каждому современному человеку очевидна невозможность существования любой современной технической структуры, вклю­чая строительство, транспорт и промышленное производство, без высокого уровня упорядоченности. Примеры упорядочения можно найти в самых разных областях: всем известно наличие определен­ных правил в музыке и поэзии, в технике безопасности и дорожном движении.

То, что обычно происходит в новых областях науки и техники, нельзя назвать «хаосом» или беспорядком, но и признать удовле­творительно упорядоченным тоже никак нельзя. Упорядочение, т.е. приведение знаний и объектов в систему, начинается на базе нако­пления определенной информации и продолжается вплоть до «от­мирания» или замены данной системы новой, более общей или более строгой. Примерами остаточной неупорядоченности в срав­нительно новых технических областях можно считать разные сис­темы телевидения, нестыкующиеся типы компьютеров и др. Все сохраняемые технические решения, как правило, имеют значи­тельные достоинства и определенную конкурентоспособность. Кроме того, в технике значительную роль играет фактор преемст­венности, требующий согласования новых изделий с ранее выпус­кавшимися.



Объектами упорядочения являются не только изделия (теле­визионная аппаратура, компьютеры, автомобили и т.д.), но и раз­личные процессы (например, технологические процессы обработки изделий и оказания услуг, правила перехода дороги, правила на­писания литературных и музыкальных произведений), а также ус­ловные обозначения (знаки), применяемые в самых различных об­ластях (цифры, ноты, обозначения единиц физических величин, знаки дорожные и др.) (рис. 1.1).

Полнота упорядочения объектов зависит от их характера и назначения и может колебаться в широких пределах. Так стацио­нарные электрические машины и другие устройства обычно рас­считаны на использование стандартного сетевого напряжения, а транспортируемые – на использование стандартных источников питания с напряжением, кратным 1,5 В, при значительном разно­образии назначения и конструкций.

 

 
 

 

 


 

 

Рис. 1.1. Объекты упорядочения



 

Практически в любом сложном изделии в большей или меньшей степени используются стандартные элементы (материа­лы, конструктивные решения и покупные изделия). Встречаются изделия, которые можно считать упорядоченными комплексно, по­скольку они полностью состоят из унифицированных частей. В на­стоящее время наиболее яркие примеры такого комплектования можно найти в вычислительной технике.

Упорядочение осуществляется с помощью норм и правил, ко­торые могут быть специально разработанными, официальными (инструкции, законы, распоряжения, указания, стандарты) и «не­писаными» (обычаи, традиции, этикет и т.д.). Обычно нормативные акты однозначно устанавливают нормы и правила их применения, в то время как «мягкие» нормы допускают более или менее широ­кую вариативность. В качестве примера можно представить разли­чия в приветствиях при встрече в гражданском обществе и у военных.

Упорядочение свойств любых объектов вызвано необходи­мостью:

· контролировать параметры объекта;

· оценивать уровень качества объекта;

· выявлять зависимости между свойствами (параметрами, характеристиками) объекта в целом и функциональными (в том числе и точностными) параметрами и характеристиками его элементов.

Под параметром объекта здесь понимается его количествен­ный признак, представляющий собой объективную числовую оцен­ку отдельного свойства. Принято различать основные параметры (из которых могут быть выделены главные) и второстепенные. К основным параметрам относят те, которые определяют характер­ные свойства объекта, в то время как второстепенные не оказывают на качество объекта существенного влияния.



Для упорядоченного описания свойств сложных объектов не­обходимо выделить наиболее существенные из них, что можно сде­лать с помощью анализа назначения объекта и сопоставления объ­ектов одинакового или близкого назначения. К основным относят те свойства, которыми обладают все однородные объекты, а также особые свойства, которые определяют их принципиальные разли­чия. Например, все наручные часы характеризуются точностью хо­да, продолжительностью работы от одного завода пружины или источника питания, а также массой и габаритными размерами. Но не все модели одинаково информативны: текущее время в часах и ми­нутах показывают все часы, а секунды, день недели и число меся­ца - отдельные типы часов, причем в разных сочетаниях. Не все модели наручных часов снабжены такими устройствами, как будильник и секундомер.

После выявления существенных свойств объектов обычно распределяют их по уровню значимости для потребителя (ранжи­руют), причем принятая модель потребителя в значительной сте­пени определяет порядок ранжирования. Если пожилые мужчины покупают точные часы с повышенной информативностью и разли­чимостью показаний, то молодые женщины предпочитают часы-украшения – даже в ущерб точности и удобству считывания ин­формации.

Выделенные главные и второстепенные свойства нормируют, по возможности ограничивая номенклатуру жестко нормируемых свойств. Нормирование допустимых колебаний свойств всегда представляет собой компромисс между растущими запросами по­требителя и возможностями производителя обеспечить экономич­ное достижение устанавливаемых требований. Если потребитель «хочет слишком много», ему предлагается выбор: либо оплатить с избытком свои завышенные запросы, либо снизить требования до «умеренно высоких».

Для того чтобы серийно выпускаемые изделия обладали не­обходимыми потребителю свойствами, надо нормировать выходные характеристики этих изделий. Формально назначение норм состоит в наложении на параметры некоторых ограничений. Ограничение может оформляться заданием предельного значения параметра, например: радиус не менее 0,5 мм (R 0,5 min), масса не более 1 кг (1 кг max).

Любой параметр может быть ограничен с одной стороны ука­занием верхнего или нижнего предела (однопредельное ограниче­ние), либо с двух сторон (двухпредельное нормирование). Поле допустимой неопределенности параметра А, ограниченное зада­ваемыми предельными значениями Amin и Аmах, называют полем допуска параметра. Допуском Т параметра называют разность ме­жду наибольшим и наименьшим допустимыми предельным зна­чениями параметра:

Т = Аmax – Аmin

Допуск может быть выражен величиной абсолютной (в еди­ницах параметра) либо относительной (например, в процентах от номинального значения параметра), но он всегда является величи­ной положительной, поскольку является разностью большего и меньшего предельных значений.

Годность изделия по некоторому параметру Q оценивают сравнением действительного значения параметра с предельными:

Qmin ≤ Qдейств ≤ Qmax

 

Для обеспечения заданного уровня качества (что в значи­тельной мере определяется выходными характеристиками изде­лий) необходимо нормировать те параметры составляющих изделие частей (деталей, узлов, покупных изделий), которые определяют значения каждой из выходных характеристик.

Процесс назначения требований к объектам можно назвать нормированием. Нормирование осуществляется с использованием специальных документов или образцов.

Документ, содержащий правила, общие принципы, характе­ристики, касающиеся определенных видов деятельности или их результатов, и доступный широкому кругу потребителей (пользова­телей), называется нормативным документом. Несмотря на различные названия таких документов (стандарт, технические ус­ловия, методические указания и т.д.), их суть состоит в стандарти­зации норм и требований, потому далее будем пользоваться обоб­щенным названием «стандарт» для всех подобных документов и сводов правил.

В наиболее широком смысле «стандартом» можно считать лю­бое нормирующее предписание (например, рецепт домашнего пирога, правила спортивных соревнований, описание технологиче­ского процесса обработки детали) или изделие-образец. В узком смысле стандарт – нормативный документ, образец (изделие), ко­торый определяет требования к объекту стандартизации или соот­ветствует установленным требованиям по своему содержанию и ут­вержден компетентной инстанцией.

В соответствии с определением Международной организации по стандартизации (ИСО) стандарт – нормативный документ по стандартизации, разработанный, как правило, на основе согласия, характеризующегося отсутствием возражений по существенным вопросам у большинства заинтересованных сторон, и утвержденный признанным органом (или предприятием), в котором могут уста­навливаться для всеобщего и многократного использования прави­ла, общие принципы, характеристики, касающиеся определенных объектов стандартизации, и который направлен на достижение оп­тимальной степени упорядочения в определенной области.

Стандарты основываются на обобщенных результатах науки, техники и практического опыта и направлены на достижение оп­тимальной пользы для общества. Экономия изготовителя на несо­блюдении стандартов, как правило, оборачивается дополнитель­ными затратами для потребителя, вынужденного разрабатывать или заказывать согласующие устройства.

Стандартизация – деятельность, направленная на достиже­ние оптимальной степени упорядочения в определенной области посредством установления положений для всеобщего и многократ­ного применения в отношении реально существующих или потенциальных задач. В частности, эта деятельность проявляется путем разработки, опубликования и применения стандартов и техниче­ских условий на продукцию. Важнейшими результатами деятель­ности по стандартизации являются повышение степени соответст­вия продукции, процессов и услуг их функциональному назначению, устранение барьеров в торговле и содействие научно-техническому и экономическому сотрудничеству.

Объекты стандартизации (предметы, продукты, процессы, ус­луги, подлежащие или подвергающиеся стандартизации) весьма разнообразны. Стандартизуют конкретные изделия от соски до ав­томобиля, организационные и технологические процессы, условные обозначения. Например, Единая система конструкторской доку­ментации (ЕСКД) стандартизует технологический процесс разра­ботки конструкционной документации (стадии проектирования, до­кументацию на каждой стадии, ее состав и наполнение), содержание и оформление чертежей и условные обозначения (от правил проекционного черчения до обозначений допусков разме­ров, формы и расположения или параметров шероховатости по­верхностей).

Все стандарты, действующие в стране, можно считать систе­мой, которая складывается из элементов (отдельных стандартов) и подсистем («системы стандартов», например Государственная сис­тема стандартизации, Государственная система обеспечения един­ства измерений и др.). В свою очередь, национальную стандартиза­цию можно считать частью международной стандартизации, которая охватывает ряд стран (например, стандартизация в рамках СНГ) или большинство стран мира (стандартизация ИСО).

Научные основы стандартизации включают системный под­ход, оптимизацию параметров и формализацию параметрических рядов. Кроме того, при стандартизации конкретных объектов обя­зательно используются результаты соответствующих научных на­правлений, включая новейшие достижения.

Системный подход используется для комплексной стандарти­зации взаимосвязанных компонентов, входящих в объекты стан­дартизации. Например, для повышения качества бытовой радио­аппаратуры необходимо повысить требования к комплектующим изделиям, в том числе к «элементной базе» – полупроводниковым приборам, резисторам, конденсаторам и т.д. Для повышения качества этих элементов приходится ужесточать требования к по­луфабрикатам и материалам, которые идут на их изготовление. Очевидно, что необходимо будет также менять требования к техно­логическим процессам по всей цепочке изготовления изделия.

Математические методы оптимизации параметров объектов стандартизации используют для достижения «всеобщей оптималь­ной экономии» как в сфере эксплуатации стандартных изделий, так и при их изготовлении. Например, главные параметры некоторого типоразмерного ряда изделий (стиральных машин, самолетов, кроссовок, сверлильных станков) должны представлять ряды зна­чений, которые практически перекрывают основные запросы потребителя при минимизации затрат изготовителя. Но это не зна­чит, что кто-то из них должен жестко диктовать требования друго­му. Кому могут быть выгодны стиральные машины, рассчитанные на 1,0; 1,5; 2,0; 2,5; 3,0...99,5; 100,0 килограммов белья? Самолеты только на 25 и 350 пассажиров? Кроссовки только 25 размера?

Математика предоставляет возможности использования та­ких формальных рядов чисел, как геометрическая прогрессия, арифметическая прогрессия или их комбинации в различных соче­таниях, которые используются для представления параметриче­ских рядов. Этот процесс называют формализацией.

Установление норм с помощью стандартов и их применение подчиняется определенным условиям и преследует цели в первую очередь экономического характера. Нормирование любых объектов направлено на минимизацию средств, необходимых для получения удовлетворительных результатов. При этом нормы на изделия и процессы должны ограничивать уровень качества объектов снизу, защищая интересы потребителя.

Нормирование конкретных параметров объектов, осуществ­ляется в соответствии со следующими правилами:

1. Соблюдение принципов нормирования.

1.1. Полнота охвата параметров – следует жестко нормиро­вать функционально важные параметры и нормировать более сво­бодно остальные; полнота охвата будет достаточной, если отсутст­вие каких-то норм не может отрицательно сказаться на качестве изделия. При нормировании параметров необходимо учитывать, что ненормированные параметры могут быть истолкованы изгото­вителем произвольно; это может привести к снижению уровня ка­чества.

1.2. Однозначность требований – нормы должны задаваться настолько определенно, чтобы их могли объективно проверить сам изготовитель, контролер и потребитель продукции. Неоднознач­ность нормирования параметров приводит к возможности неодина­кового истолкования, что может привести к конфликтам между за­казчиком и изготовителем. Нормированные параметры фактически становятся неконтролепригодными.

1.3. Оптимальность нормирования параметров – оптималь­ные значения норм необходимо устанавливать исходя из экономи­ческих критериев. Один из возможных критериев – экономия совокупного общественно-полезного труда на изготовление и экс­плуатацию изделия.

В случаях, когда работа изделия связана с обеспечением безопасности людей или выход его из строя может привести к большим экономическим потерям, авариям и т.д., основным крите­рием служит безотказность.

Оптимальность нормирования параметров подразумевает достижение заданного уровня качества с минимальными экономи­ческими затратами. Необходимость оптимального нормирования очевидна, но трудно реализуема из-за множества возможных кри­териев оптимизации, сложности учета влияющих факторов, проти­воречивости предъявляемых требований и т.д.

2. Использование методов нормирования.

Выбор норм может осуществляться двумя методами:

2.1. Заимствование норм, например прямой перенос требова­ний нормативных документов (НД) или норм объекта-прототипа на проектируемый объект («метод прецедентов или аналогов»), либо заимствование апробированных решений подобных задач из ранее выполненных проектов, справочной и научно-технической литера­туры и других источников («метод подобия»).

2.2. Назначение норм по итогам специально проведенной ис­следовательской работы, которая может включать теоретическое прогнозирование результатов при выбранных нормах или оценку (расчет) норм для достижения заданных результатов (в литературе «расчетный метод»), либо экспериментальное исследование вари­антов изделий с произвольно (интуитивно, методом проб) назна­ченными нормами.

Возможно и «смешанное» использование этих двух под­ходов в разных пропорциях.

Использование опыта решения подобных задач, зафиксиро­ванного в нормативной документации или научно-технической ли­тературе, обеспечивает значительное сокращение времени норми­рования. Назначение норм по аналогии с известными решениями оправдывает себя в тех случаях, когда решают не слишком ответст­венную задачу, используют известное решение при жестком огра­ничении условий задачи (тривиальная задача) или заимствуют ап­робированное решение действительно подобных задач. Аналоги берут из нормативной документации, справочников, готовых конст­рукторских и технологических разработок.

3. Оформление выбранных норм в соответствии с требованиями действующих нормативных документов.

Необходимо помнить, что однозначно установленная норма должна найти адекватное отражение при ее оформлении. Следует избегать формулировок типа: «Каретка должна перемещаться лег­ко и плавно», «Крышку надежно закрепить» и т.д. Оформление тре­бований в документации на нормируемый объект должно обеспе­чить однозначное их прочтение и истолкование изготовителем, контролером и пользователем.

Область оформления нормируемых требований также явля­ется объектом стандартизации, поэтому при возможности надо использовать стандартные выражения норм (стандартные термины, определения, условные обозначения). Формулировки в действую­щей нормативной документации избавляют от опасности внести дополнительные («творческие», личные) ошибки. Для обеспечения однозначности требований удобно использовать не только специ­ально разработанные формулировки (вербальное оформление), но и условные обозначения (знаковое оформление). При наличии стандартных условных обозначений предпочтительно их использо­вание вместо словесных описаний (информация представляется в компактном виде, быстрее оформляется, читается и проверяется квалифицированным пользователем).

 

2. ОСНОВНЫЕ СВЕДЕНИЯ О ВЗАИМОЗАМЕНЯЕМОСТИ

2.1. Цели нормирования требований к точности в машиностроении.

Взаимозаменяемость

 

Как было уже сказано выше, технически невозможно и экономически нецелесообразно добиваться абсолютной точности изготовления элементов детали и нецелесобразно во всех случаях устанавливать высокие требования к точности. Поэтому и возникает необходимость нормировать требования к точности элементов детали.

Помимо этого есть еще один существенный момент, по которому для современной промышленности необходимо нормировать требо­вание к точности по всем указанным ранее геометрическим парамет­рам. Это связано с необходимостью обеспечения принципа взаимо­заменяемости.

Взаимозаменяемостью называется принцип нормирования тре­бований к размерам элементов деталей, узлов, механизмов, использу­емый при конструировании, благодаря которому представляется возможным изготавливать их независимо и собирать или заменять без дополнительной обработки при соблюдении технических требований к изделию.

Другими словамивзаимозаменяемость – это свойство независимо изготов­ленных деталей занимать свое место в сборочной единице без дополнительной механической или ручной обработки при сборке, обеспечивая при этом нормальную работу собираемых изделий (узлов, механизмов, машин).

Рассмотрим это определение. Независимое изготовление деталей означает следующее. В современном производстве детали разных типов и конструкций изготовляют строго по чертежам на разных рабочих местах, в различных цехах и заводах и даже в разных странах. Детали в процессе обработки проходят много технологических операций. Например, заготовки блоков шестерен для коробки передач вытачивают на токарном станке, шлицевую поверхность в блоках обрабатывают на протяжном станке, зубья меньшей шестерни блока обрабатывают на зубострогальном, а большей – на зубофрезерном станках. По соответствующему чертежу и тех­нологическому процессу изготовляют валыи другие детали данных коро­бок передач

Разъясним следующую часть определения: детали должны занимать свое место в сборочной единице без дополнительной обработки.Сборочная единица – это часть машины или прибора, состоящая из нескольких деталей, соединенных между собой. Например, вал с блоком шестерен и подшипниками образует сбороч­ную единицу из деталей. Вал со шпонками, зубчатыми колесами, втулками и подшипниками образует вторую сборочную единицу из другого числа деталей деталей.

После установки этих сборочных единиц в корпусе, сборки с корпусом механизма переключения и крышки получаем коробку передач, которая является частью более сложной сборочной единицы какой-либо машины.

Таким образом, сборка заключается в последовательном соединении деталей в сборочные единицы, а сбороч­ных единиц в общую систему – механизм, машину, прибор

Сборку можно вести двумя способами: с подгонкой и без подгонки соединяемых деталей или сборочных единиц. Сборку без подгонки применяют в массовом и по­точном производстве, а с подгонкой – в единичном и мел­косерийном.

Наконец, в определении указано, что сборка без подгонки должна обеспечивать нормальную работу соби­раемого изделия.

Таким образом, изготовление деталей с необходимой точностью и применение соединений, отвечающих условиям работы и сборки, обеспечивает работоспособность изделий при сборке без подгонки.

Современный человек, как правило, не знающий, что такое взаи­мозаменяемость, постоянно сталкивается с ней на производстве или в быту. Так, не вызывает удивления возможность замены электричес­кой лампочки или сломанной иглы в швейной машинке, хотя патрон для лампочки и лампочка, машинка и игла были изготовлены в разное время на разных предприятиях и даже, может быть, в разных странах. Но такая замена оказалась возможной только потому, что при конст­руировании этих устройств требования к точности их элементов уста­навливались исходя из необходимости обеспечения принципа взаимозаменяемости.

Поэтому и представилась возможность изготавливать их по раз­работанным чертежам независимо друг от друга. Необходимо обратить внимание, что когда говорят о взаимозаме­няемости, речь идет не только о простой сборке и замене, а о том, чтобы были соблюдены технические требования, т.е. взаимозаменяемость должна обеспечивать функционирование изделия.

 

Виды взаимозаменяемости

Можно выделить несколько видов взаимозаменяемости по раз­ным классификационным признакам.

Полная и неполная (ограниченная)взаимозаменяемость. Полная взаимозаменяемость это взаимозаменяемость, соответст­вующая приведенному выше определению, а именно полностью взаи­мозаменяемыми называются детали и узлы, которые устанавливаются при сборке без дополнительной операции по обработке, без регули­ровки и без подбора, т.е. только закрепляются, если это требуется.

Неполная (ограниченная) взаимозаменяемость имеет место, когда при сборке может потребоваться установка детали либо узла с размерами определенной группы – групповая взаимозаменяемость (селективная сборка, например, при производстве подшипников) или требуется дополнительная обработка одного из элементов детали.

Если в телевизоре перегорел резистор, то при ремонте достаточно заменить его. Следовательно, по этим элементам телевизор обладает полной взаимозаменяемостью. А если в телевизоре сгорела электронно-лучевая трубка, то, покупая новую, ее устанавливают в старый корпус, на то же место (полная взаимозаме­няемость в отношении размеров), но приходится подстраивать некоторые контуры, т.е. в этой части телевизор обладает ограниченной взаимозаменяемостью.

Когда при сборке узлов подбираются всевозможные прокладки, компенсаторы, то это тоже неполная взаимозаменяемость.

Размерная(геометрическая) и параметрическая взаимозаменяемость. В приведенном выше примере с электронно-лучевой трубкой последняя обладала размерной взаимозаменяемостью, но не обладала параметрической, поскольку воз­никла необходимость регулировки параметров электрических контуров с учетом конк­ретных параметров этой трубки.

Параметрическая взаимозаменяемость чаще всего относится к устройствам, в которых эксплуатационные свойства характеризуются оптическими, электрическими и другими немеханическими физическими параметрами.

Внешняя и внутренняя взаимозаменяемость. Это понятие относится не к деталям, а к узлам и к изделию в целом.

Внешняя взаимозаменяемость – это взаимозаменяемость по выходным данным узла: его присоединительным размерам или экс­плуатационным параметрам.

При поломке подшипника качения, он может быть заменен на другой подшипник того же типоразмера. Если сгорел электродвигатель, то он может быть заменен другим. В обоих примерах узлы обладают внешней взаимозаменяемостью.

Внутренняя взаимозаменяемость – это взаимозаменяемость де­талей, входящих в узел, или узлов, входящих в изделие.

Так, в приведенном выше примере, если разобрать несколько одинаковых подшипников и, перемешав детали, вновь собрать, то почти наверняка все подшипники, если они соберутся, не будут соответствовать техническим требованиям, так как при производстве подшипников используется неполная взаимозаменяемость и с кольцами определенных размеров собирают шарики и ролики также определенного размера. Другими словами, подшипник не обладает внутренней взаимозаменяемостью, но обла­дает внешней.

Взаимозаменяемость не обеспечивается одной только точностью геометрических параметров. Пусть, например, зубчатые колеса, поступившие на сборку, изготовлены по заданным размерам, но у части из них не обеспечена необходимая твердость зубьев при термической обработке. Такие зубчатые колеса менее долговечны, и фактически взаимозаменяемость собранных узлов в данной партии будет нарушена. Поэтому современным направлением взаимозаменяемости является функциональная взаимоза­меняемость,при которой точность и другие эксплуатаци­онные показатели деталей, сборочных единиц и комплек­тующих изделий должны быть согласованы с назначением и условиями работы конечной продукции.

Взаимозаме­няемость по геометрическим параметрам является част­ным видом функциональной взаимозаменяемости. Геометрическая взаимозаменяемость выделяется осо­бо, так как в машиностроительном производстве именно формооб­разование деталей является преимущественным видом работ. Гео­метрические параметры взаимозаменяемых изделий всегда получают с ограниченной точностью. Абсолютная точность на прак­тике недостижима, да и необходимости в ней нет. Как правило, нормально работают детали, изготовленные в некотором диапазоне геометрических параметров. Чем жестче назначенный диапазон, тем дороже деталь. Стоимость деталей резко возрастает с повыше­нием точности обработки, поэтому избыточные требования к точности неоправданно удорожают изделие. Но с другой стороны, заниженные требования к точности делают изделие неработоспособным. Геометрическая взаимозаменяемость обеспечивается использованием различных систем допусков и посадок.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.