Сделай Сам Свою Работу на 5

Покажите, что физическое пространство и время отличается от пространства и времени наших ощущений.





Специальная теория относительности объединила пространство и время в единый континуум пространство-время. Основанием для такого объединения послужили и постулат о предельной скорости передачи взаимодействий материальных тел – скорости света, равной в вакууме примерно 300 000 км/с, и принцип относительности. Из данной теории следует относительность одновременности двух событий, происшедших в разных точках пространства, а также относительность измерений длин и интервалов времени, произведенных в разных системах отсчета, движущихся относительно друг друга. Все это означает, что для реального мира пространство и время имеют не абсолютный, а относительный характер.В природе существует единое пространство-время, которое разделено только в человеческом мышлении.

Конкретизация

Специальная теория относительности, построение которой было завершено А. Эйнштейном в 1905 году, доказала, что в реальном физическом мире пространственные и временные интервалы меняются при переходе от одной системы отсчета к другой. Система отсчета в физике - это образ реальной физической лаборатории, снабженной часами и линейками, то есть инструментарием, с помощью которого можно измерять пространственные и временные характеристики тел. Старая физика считала, что если системы отсчета движутся равномерно и прямолинейно относительно друг друга (такое движение называется инерциальным), то пространственные интервалы (расстояние между двумя близлежащими точками) и временные интервалы (длительность между двумя событиями) не меняются.



Теория относительности эти представления опровергла, вернее, показала их ограниченную применимость. Оказалось, что только тогда, когда скорости движения малы по отношению к скорости света, можно приблизительно считать, что размеры тел и ход времени остаются одними и теми же, но когда речь идет о движениях со скоростями, близкими к скорости света, то изменение пространственных и временных интервалов становится заметным. При увеличении относительной скорости движения системы отсчета пространственные интервалы сокращаются, а временные растягиваются.

Это совершенно неожиданный для здравого смысла вывод. Получается, что ракета, которая имела на старте некоторую фиксированную длину, при движении со скоростью, близкой к скорости света, должна стать короче. Вместе с тем в этой же ракете замедлились бы и ход часов, и пульс космонавта, и его мозговые ритмы, обмен веществ в клетках его тела, то есть время в такой ракете протекало бы медленнее, чем время у наблюдателя, оставшегося на месте старта. Это, конечно, противоречит нашим обыденным представлениям, которые формировались в опыте относительно малых скоростей и поэтому недостаточны для понимания процессов, которые развертываются с околосветовыми скоростями.



Теория относительности обнаружила еще одну существенную сторону пространственно-временных отношений материального мира. Она выявила глубокую связь между пространством и временем, показав, что в природе существует единое пространство-время, а отдельно пространство и отдельно время выступают как его своеобразные проекции, на которые оно по-разному расщепляется в зависимости от характера движения тел.

Абстрагирующая способность человеческого мышления разделяет пространство и время, полагая их отдельно друг от друга. Но для описания и понимания мира необходима их совместность, что легко установить, анализируя даже ситуации повседневной жизни. В самом деле, чтобы описать какое-либо событие, недостаточно определить только место, где оно происходило, важно еще указать время, когда оно происходило.

До создания теории относительности считалось, что объективность пространственно-временного описания гарантируется только тогда, когда при переходе от одной системы отсчета к другой сохраняются отдельно пространственные и отдельно временные интервалы. Теория относительности обобщила это положение. В зависимости от характера движения систем отсчета друг относительно друга происходят различные расщепления единого пространства-времени на отдельно пространственный и отдельно временной интервалы, но происходят таким образом, что изменение одного как бы компенсирует изменение другого. Если, например, сократился пространственный интервал, то настолько же увеличился временной, и наоборот.



Получается, что расщепление на пространство и время, которое происходит по-разному при различных скоростях движения, осуществляется так, что пространственно-временной интервал, то есть совместное пространство-время (расстояние между двумя близлежащими точками пространства и времени), всегда сохраняется, или, выражаясь научным языком, остается инвариантом. Объективность пространственно-временного события не зависит от того, из какой системы отсчета и с какой скоростью двигаясь наблюдатель его характеризует. Пространственные и временные свойства объектов порознь оказываются изменчивыми при изменении скорости движения объектов, но пространственно-временные интервалы остаются инвариантными. Тем самым специальная теория относительности раскрыла внутреннюю связь между собой пространства и времени как форм бытия материи. С другой стороны, поскольку само изменение пространственных и временных интервалов зависит от характера движения тела, то выяснилось, что пространство и время определяются состояниями движущейся материи. Они таковы, какова движущаяся материя.

Таким образом, философские выводы из специальной теории относительности свидетельствуют в пользу реляционного рассмотрения пространства и времени: хотя пространство и время объективны, их свойства зависят от характера движения материи, связаны с движущейся материей.

Идеи специальной теории относительности получили дальнейшее развитие и конкретизацию в общей теории относительности, которая была создана Эйнштейном в 1916 году. В этой теории было показано, что геометрия пространства-времени определяется характером поля тяготения, которое, в свою очередь, определено взаимным расположением тяготеющих масс. Вблизи больших тяготеющих масс происходит искривление пространства (его отклонение от евклидовой метрики) и замедление хода времени. Если мы зададим геометрию пространства-времени, то тем самым автоматически задается характер поля тяготения, и наоборот: если задан определенный характер поля тяготения, расположения тяготеющих масс относительно друг друга, то автоматически задается характер пространства-времени. Здесь пространство, время, материя и движение оказываются органично сплавленными между собой.

17. Что такое однородность и изотропность пространства? Покажите, что пространство в картине мира Аристотеля-Птолемея было неоднородным и неизотропным.

Философия

Однородность пространства означает отсутствие в нем каких-либо выделенных точек, а изотропность — равноправность всех возможных направлений. В отличие от пространства время обладает только свойством однородности, заключающимся в равноправии всех его моментов. Свойства однородности пространства и времени и изотропности пространства теснейшим образом связаны с фундаментальными физическими законами, и прежде всего с законами сохранения. Они и лежат в основании самого принципа физической относительности.

 

Аристотель и Птолемей являются создателями классич. геоцентризма в его наиболее последовательном и завершенном виде. Если Птолемей создал законченую кинематическую схему, то Аристотель заложил физические основы геоцентризма. Синтез физики Аристотеля и астрономии Птолемея и дает то, что обычно именуют птолемеевско-аристотелевской системой мира.

Выводы Аристотеля и Птолемея базировались на анализе видимых движений небесных тел. Этот анализ сразу же обнаруживал т.н. «неравенства» в движении планет, к-рые еще в глубокой древности были выделены из общей картины звездного неба. Первое неравенство заключается в том, что скорость видимого движения планет не остается постоянной, а периодически изменяется. Второе неравенство состоит в сложности, петлеобразности линий, описываемых планетами в небе.

В основе системы мира Аристотеля лежит представление о непроходимой пропасти между земными элементами (земля, вода, воздух, огонь) и элементом небесным (quinta essentia). Несовершенству всего земного противопоставляется совершенство небесного. Одним из выражений этого совершенства и является равномерно-круговое движение концентрических сфер, к которрым прикреплены планеты и остальные небесные светила. Вселенная ограничена. В центре ее покоится Земля. Центральное положение и неподвижность Земли объяснялись своеобразной "теорией тяготения" Аристотеля. Недостатком концепции Аристотеля (с т. зр. геоцентризма) являлось отсутствие количественного подхода, ограничение исследования чисто качествественным описанием. Между тем потребности практики (и отчасти запросы астрологии) требовали умения вычислять для любого момента положения планет на небесной сфере. Эту задачу решил Птолемей (2 в.). Восприняв физику Аристотеля, Птолемей отбросил его учение о концентричних сферах. В основном труде Птолемея "Альмагест" дана стройная и продуманная геоцентрическая система мира. Все планеты равномерно движутся по круговым орбитам – эпициклам. В свою очередь центры эпициклов равномерно скользят по окружности деферентов – больших кругов, почти в центре которых находится Земля. Помещая Землю не в центре деферентов, Птолемей признавал эксцентричность последних. Такая сложная система нужна была для того, чтобы с помощью сложения равномерно-круговых движений объяснять видимое неравномерное и некруговое движение планет. В течение почти полутора тысяч лет система Птолемея служила теоретической базой для расчета небесных движений. Вращательное и поступательное движение Земли отвергалось на том основании, что при большой скорости такого движения все тела, находящиеся на поверхности Земли, оторвутся от нее и улетят. Центральное положение Земли объяснялось естественным стремлением всех земных элементов к центру. Только правильные представления об инерции и тяготении могли окончательно разбить цепь доказательств Птолемея.

 

Естествознание

Весьма важным для понимания законов природы является принцип инвариантности относительно сдвигов в пространстве и во времени, т. е. параллельных переносов начала координат и начала отсчета времени. Он формулируется так: смещение во времени и в пространстве не влияет на протекание физических процессов.

Инвариантность непосредственно связана с симметрией, представляющей собой неизменность структуры материального объекта относительно его преобразований, т. е. изменения ряда физических условий.

В широком смысле симметрия означает инвариантность как неизменность свойств системы при некотором изменении (преобразовании) ее параметров. Наглядным примером пространственных симметрии физических систем является кристаллическая структура твердых тел. Симметрия кристаллов – закономерность атомного строения, внешней формы и физических свойств кристаллов. Она заключается в том, что кристалл может быть совмещен с самим собой путем поворотов, отражений, параллельных переносов и других преобразований симметрии. Симметрия свойств кристалла обусловлена симметрией его строения.

Из сформулированного принципа инвариантности относительно сдвигов в пространстве и во времени следует симметрия пространства и времени, называемая однородностью пространства и времени.

Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

Из свойства симметрии пространства – его однородности следует закон сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.

Однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.

Из однородности времени следует закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной (например сила трения).

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных системах полная механическая энергия сохраняется.

В диссипативных системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии. Строго говоря, все реальные системы в природе диссипативные.

В консервативных системах полная механическая энергия остается постоянной, могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах.

Закон сохранения и превращения энергии – фундаментальный закон природы; он справедлив как для систем макроскопических тел, так и для микросистем.

В системе, в которой действуют консервативные и диссипативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии – сущность неуничтожения материи и ее движения, поскольку энергия, по определению, – универсальная мера различных форм движения и взаимодействия.

Закон сохранения энергии – результат обобщения многих экспериментальных данных. Идея этого закона принадлежит М.В. Ломоносову (1711–1765), изложившему закон сохранения материи и движения, а количественная его формулировка дана немецкими учеными – врачом Ю. Майером (1814–1878) и естествоиспытателем Г. Гельмгольцем (1821–1894).

Обратимся еще к одному свойству симметрии пространства – его изотропности.

Изотропность пространства означает инвариантность физических законов относительно выбора направлении осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Из изотропности пространства следует фундаментальный закон природы – закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нётер (1882–1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что из однородности пространства и времени вытекают законы сохранения соответственно импульса и энергии, и из изотропности пространства – закон сохранения момента импульса.

Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро-, макро- и мегамира. В связи с этим возросла роль весьма сложного и абстрактного математического аппарата – теории групп – наиболее адекватного и точного языка для описания симметрии. Теория групп – одно из основных направлений современной математики. Значительный вклад в ее развитие внес французский математик Эварист Галуа (1811–1832), жизнь которого рано оборвалась: в возрасте 21 года он был убит на дуэли.

Существенное ограничение однородности и изотропности пространственного распределения материи во Вселенной, налагаемое на уравнения общей теории материи и составляющее основу космологического принципа, позволило российскому математику и геофизику А.А. Фридману (1888–1925) предсказать расширение Вселенной.

Анализируя роль принципов симметрии и инвариантности современный американский физик-теоретик Э. Вигнер (р. 1902), лауреат Нобелевской премии 1963 г., показавший эффективность применения теории групп в квантовой механике, выделил ряд ступеней в познании, поднимаясь на которые мы глубже и дальше обозреваем природу, лучше ее понимаем. Вначале в хаосе повседневных фактов человек замечает некоторые эмпирические закономерности. Затем, выделяя общие свойства природных явлений и анализируя их связи, он формулирует математические законы природы, учитывая при этом начальные условия, которые могут иметь любой, даже случайный характер. Например, в классической механике в качестве начальных условий могут выступать координаты и скорость тела в некоторый начальный момент времени. Наконец, синтезируя уже известные законы, находят ряд принципов, позволяющих дедуктивным путем определить уже известные и пока неизвестные утверждения, предсказывающие те или иные физические явления и процессы.

Функция, которую несут принципы симметрии, по утверждению Э. Вигнера состоит в наделении структурой законов природы или установлении между ними внутренней связи, так как законы природы устанавливают структуру или взаимосвязь в мире явлений. Так создаются теории, охватывающие широкий круг физических явлений и процессов. Следующая ступень – анализ самих принципов границ или условий и выявление тех, при которых они выполняются.

 

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.