Сделай Сам Свою Работу на 5

Методи моделювання. Класифiкацii моделей.





Загальна характеристика методiв дослiдження та аналiзу у екологii.

Традиционное деление экологии на общую, (изучение ос­новных принципов организации и функционирования био­логических систем) и частную (изучение конкретных групп живых организмов) отражает не столько проблематику эко­логии как науки, сколько различие в характере и методах конкретных исследований.

Определенная иерархическая соподчиненность и функци­ональная взаимозависимость биологических систем различ­ных уровней определяют главную задачу экологии, которая состоит в изучении организменного, популяционного и биоценотического уровней организации экологических систем.

При таком подходе деление экологии на аутэкологию (эко­логию отдельных видов) и синэкологию (экологию сообществ и биогеоценозов) отражает реальные пути исследований, определяемых практическими запросами.

В соответствии с этим в настоящее время основными ме­тодами экологии являются:

• полевые наблюдения, позволяющие получить конкрет­ные сведения о состоянии отдельных видов и популяций; их роли в существовании определенной экологической систе­мы; зависимость от деятельности определенных групп орга­низмов, антропогенного влияния; изменении численности популяций и т.д.



• эксперименты в природных условиях, позволяющие моделировать ту или иную ситуацию, последствия ее разви­тия для конкретного сообщества организмов, биоценоза или биогеоценоза;

• математическое моделирование процессов и ситуаций, встречающихся в популяциях и биоценозах с помощью вы­числительной техники; позволяет произвести количественную оценку изучаемых про­цессов и явлений. позволя­ет с большой долей достоверности, используя накопленные данные, прогнозировать возможное развитие тех или иных процессов и ситуаций в экологических системах

Надорганизменные системы, которые изучает экология — популяции, биоценозы, экосистемы — чрезвычайно слож­ны. В них наблюдается огромное количество взаимосвязей, прочность и постоянство которых постоянно меняются. Одни и те же внешние воздействия могут привести к различным, иногда прямо противоположным результатам, в зависимос­ти от того, в каком состоянии находилась система в момент воздействия.



Предвидеть ответные реакции системы на действия конкретных факторов можно лишь через сложный анализ су­ществующих количественных отношений и закономернос­тей. Поэтому в экологии широкое распространение получил метод математического моделирования как средство изуче­ния и прогнозирования природных процессов.

Практически в построении математических моделей слож­ных процессов выделяются следующие этапы:

• тщательное изучение тех реальных явлений, которые нужно смоделировать; выявление главных компонентов и установление законов, определяющих характер взаимодей­ствия между ними; формулировка тех основных вопросов, ответы на которые должна дать модель;

• разработка математической теории, описывающей изу­чаемые процессы с необходимой детальностью; на ее основе строится модель в виде системы абстрактных взаимодействий; установленные законы должны быть облечены в точную ма­тематическую форму; конкретные модели могут быть пред­ставлены в виде логической схемы машинной программы;

• проверка модели — расчет на основе модели и сличение результатов с действительностью. При этом проверяется правильность сформулированной гипотезы. При значитель­ном расхождении модель отвергают или совершенствуют. При согласованности результатов модели используют для прогноза, вводя в них различные исходные параметры.

Расчетные методы, в случае правильно построенной мо­дели, помогают увидеть то, что трудно или невозможно про­верить в эксперименте; позволяют воспроизводить такие про­цессы, наблюдение которых в природе потребовало бы ог­ромных сил и больших промежутков времени;



В настоящее время моделируют различные по масшта­бам и характеру процессы, происходящие в реальной среде. Математическими моделями описываются и проверяются разные варианты динамики численности популяций, про­дукционные процессы в экосистемах, условия стабилизации сообществ, ход восстановления систем при разных типах на­рушений. Строятся математические модели по регулирова­нию промыслового усилия, модели промышленных популя­ций; модели трофических связей по решению проблемы с вредителями, модели эксплуатации лесного хозяйства, стра­тегические модели использования сырья, математические модели выбора способов производства, модель оптимизации платы за воду и многие другие;

В настоящее время необходимы глобальные математиче­ские модели, в которые входили бы подсистемы взаимодей­ствия между атмосферой и водой, атмосферой и поверхностью почвы, процессы в каждом из элементов окружающей среды, взаимодействие верхнего слоя атмосферы с космосом, меха­низмы саморегулирования в природе, влияние деятельности человека на окружающую среду. При значительном объеме возможностей подобная модель должна быть достаточно де­тальна для регионов Земли. На такой модели можно будет оценить крупные инженерные решения, деятельность городов, варианты гидросистем, размещение заводов и т.д.


 

Методи моделювання. Класифiкацii моделей.

С быстрым развитием ЭВМ и соответствующего ПО повышается значимость имитационного моделирования. Если для классических математических методов исследования операций было необходимо некоторое время для составления модели и ее решения, то сейчас есть возможность анализировать ситуацию, выбирая диапазон изменения входных переменных для имитационной модели. Часто они имеют графическую оболочку, примеры можно найти на сайте, это ускоряет процесс усвоения информации и принятия решений.

Рассматриваемые методы моделирования представлены в табл. 1.

Таблица 1. Методы моделирования.

Метод Описание Область применения Достоинства метода Недостатки метода
Математи-ческое моделиро-вание Составляется математический «эквивалент» процесса или объекта, отражающий его основные свойства. Любые процессы, поддающиеся математическому описанию. Широкая область применения. Зачастую достаточно сложно построить модель адекватно учитывающую все факторы.
Статистичес-кое моделиро-вание Модель основывается на выявленных статистических закономерностях. Процессы, по которым можно собрать массив статистических данных. При наличии качественных данных метод точен и, при использовании специализированного ПО, прост в применении. Большие требования к статистическим данным.
Экономико-математичес-кое моделиро-вание Раздел включает в себя методы для решения экономических задач. Экономические процессы. Метод способен моделировать экономические процессы.  
Имитацион-ное моделиро-вание Изучаемая система заменяется моделью с достаточной точностью описывающей реальную систему, с ней проводятся эксперименты с целью получения информации. Метод используется когда дорого или невозможно использовать реальную модель и/или аналитическую модель. Создается максимально приближенная к реальности модель, можно управлять временем системы и другими ее характеристиками. Сложность описания всех условий и требования вычислительной мощности.
Физическое моделиро-вание Экспериментальное моделированное, основанное на физическом подобии уменьшенной в размерах модели. Применяется при невозможности применения аналитического метода или воспроизведения в реальном размере. Область применения, недоступная другим методам. Метод может дать надежные результаты лишь при соблюдении физического подобия модели.
Натурное моделирование Моделью является материально или мысленно представляемый объект, в достаточной степени повторяющий свойства, существенные для моделирования. Применяется для проведения ряда тестов над моделью. Примеры – различные этапы прототипирования на производстве. Возможность протестировать объект моделирования в реальных условиях. Затраты на создание модели могут быть высокими.

 

Признаки классификаций моделей:

1) по области использования;

2) по фактору времени;

3) по отрасли знаний;

4) по форме представления

1) Классификация моделей по области использования:

Учебные модели – используются при обучении;

Опытные – это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик

Научно - технические - создаются для исследования процессов и явлений

Игровые – репетиция поведения объекта в различных условиях

Имитационные – отражение реальности в той или иной степени (это метод проб и ошибок)

 

2) Классификация моделей по фактору времени:

Статические – модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Примеры моделей: классификация животных…., строение молекул, список посаженных деревьев, отчет об обследовании состояния зубов в школе и тд.

Динамические – модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций.

 

3) Классификация моделей по отрасли знаний- это классификация по отрасли деятельности человека: Математические, биологические, химические, социальные, экономические, исторические и тд

 

 

4) Классификация моделей по форме представления:

Материальные– это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта-оригинала. Это экспериментальный метод познания окружающей среды. Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты

Абстрактные (нематериальные) – не имеют реального воплощения. Их основу составляет информация. это теоретический метод познания окружающей среды. По признаку реализацииони бывают: мысленные и вербальные; информационные

Мысленныемодели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель сопутствует сознательной деятельности человека.

Вербальные– мысленные модели выраженные в разговорной форме. Используется для передачи мыслей

Информационные модели – целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойств этого объекта.

Типы информационных моделей :

Табличные – объекты и их свойства представлены в виде списка, а их значения размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках)

Иерархические – объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня

Сетевые – применяют для отражения систем, в которых связи между элементами имеют сложную структуру

По степени формализацииинформационные модели бывают образно-знаковые и знаковые. Напримеры:

Образно-знаковые модели :

Геометрические (рисунок, пиктограмма, чертеж, карта, план, объемное изображение)

Структурные (таблица, граф, схема, диаграмма)

Словесные (описание естественными языками)

Алгоритмические (нумерованный список, пошаговое перечисление, блок-схема)

Знаковые модели:

Математические – представлены матем.формулами, отображающими связь параметров

Специальные – представлены на спец. языках (ноты, хим.формулы)

Алгоритмические – программы

Признаки классификаций моделей:Классификация моделей по области использования


 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.