Сделай Сам Свою Работу на 5

Природа физических законов





Попробуем, не прибегая к специальной терминологии, кратко резюмировать наши основные шаги на пути к решению парадокса времени. Основное новое понятие, описанное в этой книге, — формулировка несводимых вероятностных законов природы. Как было показано в гл. 5-8, традиционно существовали две формулировки физических законов: одна в терминах траекторий или волновых функций, другая в терминах статистических ансамблей. Но такая статистическая формулировка не была несводимой. Она была вполне применима к отдельным траекториям или волновым функциям. Иначе говоря, при статистическом подходе не появлялись новые динамические свойства. В результате необратимое приближение к равновесию традиционно было принято связывать с приближенностью, “крупнозернистостью” описания, а стрелу времени приписывать неполноте нашего знания. Предложенная нами несводимая формулировка порывает с этой ситуацией. Необратимость и вероятность становятся объективными свойствами. Они выражают то обстоятельство, что наблюдаемый нами физический мир не может быть сведен к отдельным траекториям или отдельным волновым функциям. Переход от ньютоновского описания в терминах траекторий или шредингеровского описания в терминах волновых функций к описанию в терминах ансамблей не влечет за собой потери информации.



1Tarnas R. The Passion of the Western Mind. — N.Y.: Harmony Books, 1991, p. 443.

Наоборот, такой подход позволяет включить новые существенные свойства в фундаментальное описание неустойчивых хаотических систем. Свойства диссипативных систем перестают бьггь только феноменологическими, а становятся свойствами, не сводимыми к тем или иным особенностям отдельных траекторий или волновых функций.

Но существуют классические системы, устойчивые и обратимые во времени. Как мы теперь понимаем, они соответствуют предельным ситуациям, исключительным случаям. В квантовой механике ситуация еще более сложная, так как нарушение симметрии во времени явно признается необходимым для наблюдения квантового мира, т.е. для перехода от амплитуд вероятности к вероятности. В нашей формулировке законов природы характерные (представляющие) ситуации принадлежат к классу неустойчивых хаотических систем, которые мы отождествили с существованием несводимых вероятностных представлений. Это новое определение динамического хаоса включает в себя его обычное определение (в простых ситуациях, например в случае отображений, рассмотренных нами в гл. 5 и 9, оба определения эквивалентны) и допускает обобщение на более сложные ситуации (гл. 10 и 11), соответствующие подавляющему большинству случаев, представляющих физический интерес.



Как ни удивительно, но новая формулировка законов динамики позволяет решать и некоторые технические проблемы. Смысл хаоса состоит ныне не в том, что он ставит предел нашему знанию, — хаос позволяет по-новому сформулировать то, что нам надлежит познать. В классической динамике законы хаоса мы ассоциируем с описанием долговременной эволюции отображений (см. гл. 5 и 9) и с интегрированием “неинтегрируемых” систем Пуанкаре. Иначе говоря, наши методы дают нам алгоритмы, более мощные, нежели алгоритмы классической динамики. Аналогично, в квантовой механике наши алгоритмы позволяют устранить трудности, стоящие на пути реализации программы Гей-зенберга, т.е. решения задачи на собственные значения. Даже такая простая проблема, как задача о потенциальном рассеянии, приводит к неинтегрируемым системам Пуанкаре. Именно поэтому физики были вынуждены обратиться к теории S-матрицы, т.е. к идеализации рассеяния, рассматривающей процесс взаимодействия как происходящий в течение ограниченного времени. Для простых проблем такое упрощение вполне удовлетворительно, однако оно исключает из рассмотрения неисчезающие взаимодействия, которые встречаются в статистической механике (в задаче N тел или космологии). Учитывая все это, необходимо обратиться к нашей новой формулировке.



Причина успеха нового подхода кроется в переходе к более мощным математическим средствам. Хорошо известно, что задача, неразрешимая с помощью одного алгоритма, может стать разрешимой, если мы обратимся к другому алгоритму. Вопрос о существовании корней алгебраического уравнения неразрешим в области вещественных чисел (некоторые алгебраические уравнения могут не иметь ни одного вещественного корня), но стоит нам перейти в область комплексных чисел, как ответ становится очень простым: каждое алгебраическое уравнение n-ой степени имеет n корней. Знаменитая теорема Геделя утверждает, что не существует конечной аксиоматической системы, в рамках которой были бы разрешимы все проблемы. Поэтому отношение между проблемами и средствами, необходимыми для их решения, — процесс открытый, творческий, способный служить великолепной иллюстрацией творческого созидания человеком смысла, свободного и в то же время ограниченного решаемой задачей.

Введение несводимых вероятностных представлений подразумевает переход от гильбертова пространства к обобщенным пространствам. Еще в самом начале нашей книги мы упомянули об аналогии с переходом от евклидовой к римановой геометрии (см. также гл. 7 и 11). Действительно, гильбертово пространство является обобщением евклидова пространства при переходе от конечномерных векторов к функциям. В гильбертовом пространстве мы используем только “хорошие” функции (с конечной нормой, см. гл. 7), в то время как в обобщенном пространстве разрешается также использовать сингулярные, обобщенные, функции. В результате возникает необходимость в пробных функциях. Это существенный элемент перехода к несводимым вероятностным представлениям.

Другим существенным элементом является существование хронологического (временного) упорядочения. В гармоническом осцилляторе (классическом или квантовом) время однозначно связано с законами движения. Но в неинтегрируемых системах время играет двойственную роль (см. гл. 9 и 10). Возникает естественное упорядочение, связанное с течением времени. Простейший тому пример — различие между запаздывающими опережающими потенциалами, введенное еще в гл. 1. В общем виде это временное упорядочение может быть осуществлено на статистическом уровне описания в терминах ансамблей. Именно этот подход и позволяет нам получать несводимые представления. Если устойчивые системы ассоциируются с понятием детерминистического, симметричного, времени, то неустойчивые хаотические системы ассоциируются с понятием вероятностного

времени, подразумевающего нарушение симметрии между прошлым и будущим.

Ограниченность традиционного описания в терминах отдельных траекторий или отдельных волновых функций не должно быть чем-то удивительным. Когда мы толкуем об истории архитектуры, то имеем в виду не отдельные кирпичи, а здания в целом. С возрастом мы стареем, но этот процесс затрагивает не отдельные атомы и молекулы, а отношения между ними. Нередко приходится слышать, что история в наши дни все ускоряет и ускоряет свой бег. И в этом случае сказанное относится не к изменению природы отдельных людей, а к изменению отношений между ними, возникшему в результате небывалого развития средств связи, которое привело к созданию глобальной коммуникационной сети. Даже рождение новых идей у того или иного человека обусловлено тем, что мы погружены в разделяемый многими мир значений, проблем и отношений. Ситуация, с которой мы сталкиваемся в физике, много проще. Однако и в этом случае нам надлежит выйти за рамки концепции времени как параметра, описывающего движения отдельных систем. Адекватное физическое описание хаотических систем, эволюции во времени, включающее в себя необратимость и вероятность, достижимо только на уровне ансамблей.

Объединяющая роль хаоса

Мы глубоко убеждены в том, что наш подход приводит к более согласованному и единообразному описанию природы. Между фундаментальными законами физики и всеми остальными уровнями описания, включающего в себя химию, биологию и гуманитарные науки, существовал разрыв. Устойчивые динамические системы, а также конечные квантовые системы, описываемые в терминах волновых функций, исторически стали исходными пунктами для построения великих теоретических схем физики. Эти схемы показали в увеличенном виде то, что теперь представляется нам весьма частными случаями, и экстраполировали их далеко за пределы области применимости каждого такого случая.

Подобная новая перспектива глубоко трансформирует взаимосвязь между науками. Теперь перед нами открывается возможность избежать парадокса, который во имя фундаментальных законов низводит время до иллюзии, относя человеческий опыт к некоторой субъективности, лежащей вне природы.

На предыдущих страницах мы встречали два совершенно различных проявления хаоса, динамический хаос на микроско-

пическом уровне и диссипативныи хаос на макроскопическом уровне. Эти две разновидности хаоса не следует смешивать. Динамический хаос лежит у самого основания микроскопической физики, он включает в себя нарушение симметрии во время и служит фундаментом макроскопических явлений, управляемых вторым началом термодинамики, в число которых входят приближение к равновесию, а также диссипативные структуры и диссипативныи хаос. При исследовании макроскопических уравнений, описывающих диссипативные физические процессы или химические превращения, мы сталкиваемся с системами, микроскопическое описание которых относится уже к хаотическим системам.

Мы знаем, что вдали от равновесия может существовать множество различных аттракторов. Одни из них порождают периодический режим, как в химических часах, другие — диссипативныи хаос. Все эти диссипативные явления представляют собой макроскопические реализации хаотической динамики. Только через исследование нелинейных динамических систем мы можем постичь объединяющий элемент в неисчерпаемом разнообразии ситуаций, наблюдаемых в природе, от беспорядочного излучения абсолютно черного тела до таких высокоорганизованных систем, как живые существа. Такой объединяющий элемент не мог бы быть обнаружен, если бы фундаментальный уровень описывался в терминах интегрируемых систем (или конечных квантовых систем).

“Хаос” и “материя” — понятия, тесно взаимосвязанные, поскольку динамический хаос лежит в основе всех наук, занимающихся изучением той или иной активности вещества, начиная с физической химии. Кроме того, хаос и материя вступают во взаимосвязь еще и на космологическом уровне, так как самый процесс обретения материей физического бытия, согласно современным представлениям, связан с хаосом и неустойчивостью. Таково заключение гл. 11. Эйнштейновская космология стала венцом достижений классического подхода к познаваемости, определяемой как идентификация. В стандартной модели материя задана: она эволюционирует только в соответствии с фазами расширения Вселенной. Но, как мы видели, неустойчивость возникает, стоит нам только учесть проблему рождения матери. Таким образом, особая точка Большого Взрыва заменяется рождением материи и кривизны пространства-времени. Эйнштейновское пространство-время, соответствующее искривленной Вселенной, при нашем подходе возникает как следствие необратимых процессов.

Стрела времени становится принципиально важным элементом, лежащим в основе самих определений материи и простран-

ства-времени. Однако наша модель не соответствует рождению стрелы времени из “ничего”. Космологическая стрела времени уже предполагается неустойчивостью квантового вакуума. Действительно, направление времени, различие между прошлым и будущим, никогда не было столь существенным, как в планковский период, соответствующий возникновению нашей Вселенной из квантового вакуума. Как заметил Уайтхед, “способность к сотворению, т.е. рождению, различия между прошлым и будущим через становление является непреложным фундаментальным фактом” 1.

Можем ли мы пойти дальше? Если хаос появляется как объединяющий элемент в обширной области от классической механики до квантовой физики и космологии, то не возникает ли возможность построения “теории всего на свете”, или сокращенно ТВС?

Здесь мы считаем своим долгом высказать некоторые предостережения. прежде всего подчеркнем, что неустойчивость связана с вполне определенной формой динамики. Классический хаос есть нечто совершенно другое, чем квантовый хаос, и мы весьма далеки от большой единой схемы, охватывающей квантовую теорию и теорию относительности. Кроме того, классическая ТВС, как писал Стивен Хокинг, претендует на то, чтобы постичь замыслы Бога, т.е. достичь фундаментального уровня описания, исходя из которого все явления (по крайней мере в принципе) можно было бы вывести детерминистическим способом. Мы же говорим о совершенно иной форме унификации. ТВС, которая включала бы в себя хаос на самом глубоком уровне физики, не приводила бы к редукционистскому, вневременному описанию. Более высокие уровни допускались бы фундаментальными уровнями, но не следовали бы из них. Унифицирующий элемент, вводимый хаосом, соответствует концепции открытого эволюционизирующего мира, в котором, по словам Поля Валери, “время есть конструкция”2.

Как это часто бывает, новые перспективы приводят к переоценке прошлого. Карл Рубино3 заметил, что Аристотель отверг вечный и неизменный мир, описываемый Платоном. В своей

1 Whitehead. Process and Reality. Исправл. издание. — N.Y.: The Free Press, Macmillan, 1979, p. 21.

2 Valery P. Cahiers, vol. 1. Bibliotheque de la Pleiade. — Paris: Gallimard, 1973,p.1303

3 Rubino С. Managing the Future. Science and the Humanities and the Myth of Omniscience. Направлено в “World Future”.

“Этике” Аристотель доказывал, что акты нашего выбора не определяются нашим характером. Наоборот, последовательность актов выбора делает нас теми, кто мы есть. Этика является не областью дедуктивного знания, а “практической мудростью”, искусством делать надлежащий выбор относительно неопределенного будущего. Мы должны удержаться от платоновского искушения отождествить этику с поиском незыблемых достоверностей. Такой подход, как подчеркивает Рубино, был частью аристотелевской мудрости: при рассмотрении любого предмета не следует стремиться к большей точности, чем допускает природа предмета. На протяжении веков такая максима рассматривалась как отрицательное суждение, как призыв к отказу от чего-то. Теперь же мы в состоянии постичь и позитивный смысл этого суждения на примере описанной нами трансформации концепции хаоса. Покуда мы требовали, чтобы все динамические системы подчинялись одним и тем же законам, хаос был препятствием на пути к познанию. В замкнутом мире классической рациональности поиск знания мог легко приводить к интеллектуальному снобизму и высокомерию. В открытом мире, который мы сейчас учимся описывать, теоретическое знание и практическая мудрость нуждаются друг в друге.

Узкая тропинка

В конце жизни Эйнштейну преподнесли сборник статей о нем1, среди которых был очерк выдающегося математика современности Курта Геделя. Гедель совершенно серьезно воспринял утверждение Эйнштейна о том, что время как необратимость — всего лишь иллюзии, и представил Эйнштейну космологическую модель, в которой человек мог отправиться назад в свое прошлое. Гедель даже подсчитал количество топлива, необходимое для такого путешествия. У Эйнштейна идеи Геделя не вызвали особого энтузиазма. В своем ответе Эйнштейн заметил, что не может поверить, будто кому-нибудь удастся “телеграфировать в собственное прошлое”. Эйнштейн даже добавил, что невозможность возвращения в прошлое должна побудить физиков пересмотреть проблему необратимости. Сколь бы сильным ни было искушение вечностью, путешествие назад по времени означало бы отрицание реальности мира. Для Эйнштейна оказалось непри-

емлемым предложенное Геделем радикальное подтверждение его, Эйнштейна, собственных взглядов.

Аналогичную реакцию мы находим в прекрасной новелле великого писателя Хорхе Луиса Борхеса. В рассказе “Новое опровержение времени” Борхес описывает теории, объявляющие время иллюзией, и замечает в заключение: “И все же, и все же... Отрицание временной последовательности, отрицание себя, отрицание астрономической Вселенной — все это акты отчаяния и тайного сожаления... Время — это субстанция, из которой я состою. Время — это река, уносящая меня, но я сам река; это тигр, пожирающий меня, но я сам тигр: это огонь, поглощающий меня, но я сам огонь. Мир, к сожалению, реален; я, к сожалению, Борхес”1. Время и реальность нерасторжимо связаны между собой. Отрицание времени может быть актом отчаяния или казаться триумфом человеческой мысли, но это всегда отрицание реальности.

Отрицание времени было искушением и для Эйнштейна, ученого, и для Борхеса, поэта. Оно отвечало глубокой экзистенциальной потребности. Эйнштейн неоднократно повторял, что научился у Достоевского большему, чем у любого физика. В письме к Максу Борну (1924 г.) Эйнштейн заметил, что если бы ему пришлось отказаться от строгой причинности, то он предпочел бы стать “сапожником или крупье в игорном доме, нежели физиком”2, физика, для того чтобы она имела в глазах Эйнштейна какую-то ценность, должна была удовлетворять его потребности в избавлении от трагедии человеческого существования. “И все же, и все же...” Столкнувшись со следствием собственных идей, доведенных Геделем до предела, с отрицанием той самой реальности, которую призван познать физик, Эйнштейн отступил.

Эйнштейн придерживался глубоко пессимистических взглядов на человеческую жизнь. Он жил в особенно трагический период человеческой истории, в период фашизма, антисемитизма и двух мировых войн. Но его видение физики отождествлялось с наивысшим триумфом человеческого разума над миром, триумфом, удовлетворяющим страстному стремлению отделить чистое объективное знание от области неопределенного и субъективного. Это стремление может объяснить превалирование бытия над становлением на протяжении большей части истории физики. французский философ Эмиль Мейерсон усматривал в попытке сведения природы к тождеству основную движущую силу запад-

1 Borges J.L. A New Refutation of Time. — In: Borges J.L. Labyrinths. Penguin Modern Classics. — Penguin Books, 1970, p. 269.

2 Born M., ed. The Born-Einstein Letters. — N.Y.: Walker, 1971, p. 82.

ной науки1. Эта движущая сила парадоксальна, подчеркнул Мейерсон, так как стремление к идентификации уничтожает то, что должно познать. Что остается от нашего отношения к миру, если этот мир сводится к некоторой геометрической истине? В этом — наиболее полное выражение парадокса времени, с которым в конце концов столкнулся Эйнштейн. Для Геделя способность двигаться вспять во времени, в прошлое, по-видимому, была триумфом человеческого разума, триумфом полного контроля над нашим существованием. Однако она также со всей очевидностью обнаружила все безумие такой концепции разума, такого отрицания всех возможных ограничений, без которых не было бы созидания и творчества, ибо не было бы реальности, бросающей вызов нашим надеждам и планам.

Но и то, что полностью случайно, также лишено реальности. Мы можем понять отказ Эйнштейна от случая как от универсального ответа на наши вопросы. Мы должны отыскать узкую тропинку, затерявшуюся где-то между двумя концепциями, каждая из которых приводит к отчуждению: концепцией мира, управляемого законами, не оставляющими места для новации и созидания, и концепцией, символизируемой Богом, играющим в кости, концепцией абсурдного, акаузального мира, в котором ничего нельзя понять. Это означало бы разочарование, ведущее к стоицизму Жака Моно, открывшего Вселенную, лишенную какого бы то ни было смысла, глухую к нашей музыке, Вселенную, в которой мы появились случайно к вящему гневу и отчаянию шекспировского Макбета.

Поиск тропинки, основная тема нашей книги, может служить отличной иллюстрацией созидательной роли человека в истории науки. Как ни странно, роль творческого начала в науке часто недооценивалась. Всякий знает, что если бы Шекспир, Бетховен или Ван Гог умерли вскоре после своего рождения, то никто другой не смог бы повторить их свершений. Верно ли аналогичное утверждение применительно к ученым? Разве кто-нибудь еще не смог бы открыть классические законы движения, не будь Ньютона? Разве формулировка второго начала термодинамики столь нерасторжимо связана с личностью Клаузиуса? В этом противопоставлении литературы, музыки и изобразительного искусства, с одной стороны, и науки — с другой стороны, есть своя правда, резон. Наука — дело коллективное. Решение научной проблемы, чтобы оно было приемлемым, должно удовлетворять точным критериям и требованиям. Однако эти ограничения

1 Meyerson E. Identity and Reality. — L.: Alien and Unwm, 1930.

отнюдь не исключают творческого начала, напротив, бросают ему вызов.

Конструирование парадокса времени само по себе является выдающимся достижением творческой мысли. Разве могла бы наука, жестко ограниченная рамками эмпирических фактов, даже мечтать об отрицании стрелы времени, если все явления природы свидетельствуют об обратном? Но научное творчество — не только полет фантазии и формулировка симметричных во времени законов, которые привели к построению величественного здания классической физики, увенчанного двумя великими достижениями физики XX века — квантовой механикой и общей теорией относительности. В этом и состоит загадочная красота физики. Точно так же решение парадокса времени не могло быть только результатом полета фантазии или появиться благодаря чьему-то убеждению или обращению к здравому смыслу. Речь шла даже не о том, чтобы просто найти слабые места в здании классической физики. Парадокс времени был решен с помощью теоремы Пуанкаре, открытия динамической неустойчивости и как результат отказа от отдельных траекторий1. Нам необходимо превратить этот недостаток в достоинство, превратить хаос в новое орудие исследования ситуаций, до сих пор остававшихся вне досягаемости физики. В этом — суть “диалога с природой”, который мы связываем с научным пониманием. В процессе, включающем в себя творческий диалог, мы преобразуем то, что на первый взгляд кажется препятствием, ограничением, в новую точку зрения, которая придает и новый смысл отношению между познающим и познаваемым.

То, что возникает буквально на наших глазах, есть описание, промежуточное между двумя противоположными картинами — детерминистическим миром и произвольным миром чистых событий. Реальный мир управляется не детерминистическими законами, равно как и не абсолютной случайностью. В промежуточном описании физические законы приводят к новой форме познаваемости, выражаемой несводимыми вероятностными представлениями. Ассоциируемые теперь с неустойчивостью, будь то неустойчивость на микроскопическом или на макроскопическом уровнях, несводимые вероятностные представления оперируют с возможностью событий, но не сводят реальное индивидуальное событие к выводимому, предсказуемому следствию. Такое разграничение между тем, что

1 Этому вопросу посвящена третья часть нашей предыдущей книги (Пригожий И., Стенгерс И. Порядок из хаоса — М.: Прогресс, 1986).

предсказуемо и управляемо, и тем, что непредсказуемо и неуправляемо, возможно, удовлетворило бы эйнштейновский поиск познаваемости.

Прокладывая тропинку, избегающую драматической альтернативы между слепыми законами и произвольными событиями, мы обнаруживаем, что значительная часть конкретного мира вокруг нас до сих пор “ускользала из ячеек научной сети”, если воспользоваться выражением Уайтхеда. Пред нами открылись новые горизонты, возникли новые вопросы, появились новые ситуации, таящие опасность и риск. Мы живем в особо выделенный момент истории и питаем надежду, что нам удалось передать это убеждение своим читателям.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.