Сделай Сам Свою Работу на 5

Свойства математических ожиданий





Математическое ожидание постоянной величены равно этой постоянной; т.е. если С-постоянная величина, то

.

Постоянный множитель можно выносить за символ математического ожидания, т.е. если k постоянный множитель, то

.

Математическое ожидание суммы случайных величин равно сумме их математических ожиданий, т.е.

.

Математическое ожидание разности случайных величин равно разности их математических ожиданий, т.е.

.

Математическое ожидание произведения случайных величин равно произведению их математических ожиданий, т.е.

.

6. Если все значения случайной величины увеличить (уменьшить) на одно и тоже число С, то ее математическое ожидание увеличится (уменьшиться) на это же число

.

б) дисперсией D(X) случайной величины Х называется математического ожидания α(M(X)= α:

.

в) средним квадратическим отношением G(X) (G) случайной вершины называется арифметическим значением корня квадратного из дисперсии, т.е.

.

 

Свойства дисперсий

1. Дисперсия постоянной величены равна, т.е. если С постоянная величена, то

.

2. Постоянный множитель можно выносить за знак дисперсии, но возводя его при этом в квадрат, т.е. если k – постоянный множитель, то



.

3. Если все значения случайной величены увеличить или уменьшить на одно и то же число С, то дисперсия не изменится

.

4. Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е.

.

5. Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е.

.

6. Дисперсия случайной величены равна ожиданию квадрата ее без квадрата ее математического ожидания,т.е.

.

23.Математическое ожидание дискретной случайной величины. Свойства.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности: M(X) = x1 p1+ x2 p2+...+ xn pn.
Реально на основе данных выборки мы не можем вычислить M(X). Однако эту характеристику можно оценить. В качестве оценки можно использовать среднее арифметическое, то есть M(X) ≈`X. Чем больше объём выборки (число наблюдений), тем точнее эта оценка. Математическое ожидание обладает следующими свойствами:
1. Математическое ожидание постоянной величины равно самой постоянной: M(C) = C.
2. Постоянный множитель можно выносить за знак математического ожидания: M(CX) = CM(X).
3. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых: M(X+Y+Z) = M(X)+M(Y)+M(Z).
4. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий: M(XЧYЧZ) = M(XM(YM(Z). Все эти свойства имеют большое практическое значение.



 

24.Вероятный смысл математического ожидания.

В некоторых случаях закон распределения случайной величины неизвестен, или просто целесообразно использовать не таблицу или функцию распределения для представления случайной величины, а так называемые числовые характеристики ее распределения, в частности математическое ожидание.

Математическое ожидание дискретной случайной величины – это сумма парных произведений всех возможных ее значений на соответствующие вероятности:

,

где .

Очевидно, математическое ожидание случайной величины не изменится, если таблицу значений этой случайной величины пополнить конечным числом любых чисел, считая, что вероятности этих чисел равны нулю.

Математическое ожидание случайной величины есть величина постоянная и поэтому представляет числовую характеристику случайной величины .

Вероятностный смысл математического ожидания: математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

 

25.Математическое ожидание числа появлений событий в независимых испытаниях.



Теорема. Математическое ожидание числа появлений события в независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Доказательство. Случайная величина распределена по биномиальному закону:

( ),

где .

Величину можно рассматривать, как сумму независимых случайных величин , где ( ) – число появлений события в м испытании. Случайная величина принимает лишь два значения: 1, если событие появилось в м испытании, и 0, если в м испытании события не произошло.

Вероятности этих событий и , а математическое ожидание: ( ).

Следовательно, используя теорему о математическом ожидании суммы, получим:

.

Таким образом, математическое ожидание числа появлений события в условиях схемы Бернулли совпадает со средним числом появлений события в данной серии испытаний.

 

26.Дисперсия дискретной случайной величины.

Дисперсией дискретной случайной величины Х называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания: D ( X ) = M ( X - M ( X )) 2. Для вычислений удобнее пользоваться формулой :
D ( X ) = M ( X 2 ) - ( M ( X )) 2.
Дисперсия обладает следующими свойствами.
1. Дисперсия постоянной величины С равна нулю : D ( C ) = 0.
2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат : D ( CX ) = C 2D ( X ).
3. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме дисперсий этих величин:
D ( X+Y+Z ) = D ( X )+D ( Y )+D ( Z ).
4. Дисперсия суммы постоянной величины и случайной - равна дисперсии случайной величины: D ( C+X ) = D ( X ).
Дисперсию обозначают также как s 2 с нижним индексом, обозначающим соответствующую случайную величину или без него.

 

27.Отклонение случайной величины от её математического ожидания.

 

28.Дисперсия дискретной случайной величины. Свойства.

 

СМОТРЕТЬ ВОПРОС №26.

29.Формула для вычисления дисперсии.

Используя определение дисперсии, для дискретной случайной величины формулу вычисления дисперсии можно представить в таком виде:

Можно вывести ещё одну формулу для вычисления дисперсии:

Таким образом, дисперсия случайной величины равна разности мате­матического ожидания квадрата случайной величины и квадрата её математи­ческого ожидания.

30.Среднее квадратическое отклонение дискретной случайной величины. Среднее квадратическое отклонение суммы взаимно независимых случайных величин.

Определение: Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.

Различают два вида случайных величин: дискретные и непрерывные.

Определение: Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.

Другими словами, возможные значения дискретной случайной величину можно перенумеровать.

Описать случайную величину можно с помощью ее закона распределения.

Определение: Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.

Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т.е.

x x1 x2 х3 хn
p р1 р2 р3 ... рn

 

где р1+ р2+…+ рn=1

Такая таблица называется рядом распределения дискретной случайной величины.

Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.

Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1).

 

 

Закон распределения дискретной случайной величины Х может быть также задан аналитически (в виде формулы):

P(X=xi)=φ(xi),i =1,2,3…n

 

31.Одинаково распределенные взаимно независимые случайные величины.

Рассмотрим n взаимно независимых случайных величин X12,...,Хn, которые имеют одинаковые распределения, а следовательно, и одинаковые характеристики (математическое ожидание, дисперсию и др.).

1. Математическое ожидание среднего арифметического одинаково распределенных взаимно независимых случайных величин равно математическому ожиданию (а) каждой из ветчин:

2. Дисперсия среднего арифметического n одинаково распределенных взаимно независимых случайных величин в n раз меньше дисперсии D каждой из величин:

3. Среднее квадратическое отклонение среднего арифметического n одинаково распределенных взаимно независимых случайных величин в √n раз меньше среднего квадратического отклонения а каждой из величин:

 

32.Понятие о моментах распределения.

 

Я вообще хз где эти моменты искать…

 

33.Интегральная функция распределения. Свойства. График интегральной функции.

Интегральной функцией распределения называют функцию F(x), определяющую для каждого значения x случайной величины X вероятность того, что величина X примет значение, меньшее x, то есть F(x) = P(X < x).
Распределение вероятностей дискретной случайной величины может быть задано перечнем всех ее возможных значений и их вероятностей. Такой способ задания неприменим для непрерывных случайных величин. Общим способом задания распределений любых типов случайных величин является интегральная функция распределения. Пусть x - действительное число. Вероятность события, состоящего в том, что случайная величина X примет значение, меньшее x, то есть вероятность события X < x обозначим через F(x). Интегральной функцией распределения называют функцию F(x), определяющую для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, то есть F(x) = P(X < x). Геометрически это равенство можно истолковать так: F(x) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки x. Интегральная функция распределения имеет следующие свойства.
1. Значения интегральной функции принадлежат отрезку (0,1): 0 ³ F(x) ³ 1. Следовательно, график интегральной функции распределения расположен в полосе, ограниченной прямыми y = 0, y = 1.
2. F(x) - неубывающая функция, то есть F(x2) ³ F(x1), если x2 > x1. Следовательно, при возрастании x в интервале (a, b), в котором заключены все возможные значения случайной величины, график интегральной функции распределения поднимается вверх.
3. Если возможные значения случайной величины принадлежат интервалу (a, b), то F(x) = 0 при a ³ x, F(x) = 1 при x ³ b. То есть при a ³ x ординаты графика интегральной функции распределения равны нулю; при x ³ b ординаты графика равны единице. Для дискретной случайной величины график интегральной функции распределения имеет ступенчатый вид.

 

34.Дифференциальная функция распределения. Свойства.

Плотностью распределения вероятностей непрерывной случайной величины называют первую производную от функции распределения:

f(х) = F¢(х).

Часто вместо термина «плотность распределения» используют термины «плотность вероятностей» или «дифференциальная функция».

Вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу (a, b),определяется равенством:

.

Зная плотность распределения, можно найти функцию распределения:

.

Плотность распределения обладает следующими свойствами:

Свойство 1.Плотность распределения неотрицательна, т.е. f(x)≥0.

Свойство 2. . В частности, если все возможные значения случайной величины принадлежат интервалу (а, b), то .

 

35.Вероятность показания непрерывной случайной величины в заданный интервал.

 

Тут тоже какая то канитель непонятная…

 

36.Числовые характеристики непрерывных случайных величин.

Пусть непрерывная случайная величина Х задана функцией распределения f(x). Допустим, что все возможные значения случайной величины принадлежат отрезку [a,b].

Определение. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку [a,b], называется определенный интеграл

Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

При этом, конечно, предполагается, что несобственный интеграл сходится.

Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения.

По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:

Определение. Средним квадратичным отклонениемназывается квадратный корень из дисперсии.

Определение. МодойМ0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.

Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным.

Если распределение имеет минимум, но не имеет максимума, то оно называется антимодальным.

 

 

37.Нормальный закон распределения. Параметры.

Нормальное распределение, также называемое гауссовым распределением или распределением Гаусса — распределение вероятностей, которое задается функцией плотности распределения:

где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ² — дисперсия.

Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в статистической физике. Физическая величина, подверженная влиянию значительного числа независимых факторов, способных вносить с равной погрешностью положительные и отрицательные отклонения, вне зависимости от природы этих случайных факторов, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из названий этого распределения вероятностей).

Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

 

 

38.Вероятность попадания в заданный интервал нормальной случайной величины.

Как уже было установлено, вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу , равна определенному интегралу от плотности распределения, взятому в соответствующих пределах:
.
Для нормально распределенной случайной величины соответственно получим:
.
Преобразуем последнее выражение, введя новую переменную . Следовательно, показатель степени выражения, стоящего под интегралом преобразуется в:
.
Для замены переменной в определенном интеграле еще необходимо заменить дифференциал и пределы интегрирования, предварительно выразив переменную из формулы замены:
;
;
– нижний предел интегрирования;
– верхний предел интегрирования;
(для нахождения пределов интегрирования по новой переменной в формулу замены переменной были подставлены и – пределы интегрирования по старой переменной ).
Подставим все в последнюю из формул для нахождения вероятности:

где – функция Лапласа.
Вывод: вероятность того, что нормально распределенная случайная величина примет значение, принадлежащее интервалу , равна:
,
где – математическое ожидание, – среднее квадратическое отклонение данной случайной величины.

 

 

39.Нормальная кривая. Влияние параметров нормального распределения на форму нормальной кривой.

 

А в этом вопросе вообще какая то кривая информация… И ее слишком много для шпоры…

 

 

40.Правило трех сигм.

 

Правило 3-х s (трех “сигм”).

Пусть имеется нормально распределённая случайная величина x с математическим ожиданием, равным а и дисперсией s2. Определим веро­ятность попадания x в интервал (а – 3s; а + 3s), то есть вероятность того, что x принимает значения, отличающиеся от математического ожидания не более, чем на три среднеквадратических отклонения.

P(а – 3s< x < а + 3s)=Ф(3) – Ф(–3)=2Ф(3)

По таблице находим Ф(3)=0,49865, откуда следует, что 2Ф(3) практи­чески равняется единице. Таким образом, можно сделать важный вывод: нормальная случайная величина принимает значения, отклоняющиеся от ее математического ожидания не более чем на 3s.

(Выбор числа 3 здесь условен и никак не обосновывается: можно было выбрать 2,8, 2,9 или 3,2 и получить тот же вероятностный результат. Учитывая, что Ф(2)=0,477, можно было бы говорить и о правиле 2–х “сигм”.)

 

41.Вычисление вероятности заданного отклонения.

Часто требуется вычислить вероятность того, что отклонение нормально распределенной случайной величины по абсолютной величине меньше заданного положительного числа , т.е. тербуется найти вероятность осуществления неравенства

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.