Сделай Сам Свою Работу на 5

Третий закон термодинамики





На основании обобщения экспериментальных исследований свойств различных веществ при сверхнизких температурах был установлен закон, устранивший указанную трудность и получивший название принципа Нернста или третьего закона термодинамики. В формулировке Нернста он гласит: в любом изотермическом процессе, проведенном при абсолютном нуле температуры, изменение энтропии системы равно нулю, т. е.

DS (T=0) = 0, S = S0 = const, независимо от изменения любых других параметров состояния (например, объема, давления, напряженности внешнего силового поля и т. д.).

Основными положения тепловой теоремы Нернста:

1. При абсолютном нуле температуры свободная энергия равна теплоте процесса.

2. При температурах, близких к абсолютному нулю, теплоемкость системы равна нулю.

Одной из формулировок третьего начала термодинамики является также постулат Планка:

Энтропия идеального кристалла при абсолютном нуле температуры равна нулю.

 

Закон Гесса

Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути ее протекания:



Следствия из закона Гесса:

1. Энтальпия реакции равна разности сумм энтальпий образования конечных и начальных участников реакций с учетом их стехиометрических коэффициентов.

2. Энтальпия реакции равна разности сумм энтальпий сгорания начальных и конечных реагентов с учетом их стехиометрических коэффициентов.

3. Энтальпия реакции равна разности сумм энергий связей Eсв исходных и конечных реагентов с учетом их стехиометрических коэффициентов.

В ходе химической реакции энергия затрачивается на разрушение связей в исходных веществах (ΣEисх) и выделяетсяпри образовании продуктов реакции (–ΣEпрод). Отсюда

Следовательно, экзотермический эффект реакции свидетельствует о том, что образуются соединения с более прочными связями, чем исходные. В случае эндотермической реакции, наоборот, прочнее исходные вещества.

При определении энтальпии реакции по энергиям связей уравнение реакции пишут с помощью структурных формул для удобства определения числа и характера связей.



4. Энтальпия реакции образования вещества равна энтальпии реакции разложения его до исходных веществ с обратным знаком.

5. Энтальпия гидратации равна разности энтальпий растворения безводной соли и кристаллогидрата

Из вышесказанного видно, что закон Гесса позволяет обращаться с термохимическими уравнениями как с алгебраическими, т. е. складывать и вычитать их, если термодинамические функции относятся к одинаковым условиям.

 

Закон Кирхгофа

 

Закон Кирхгофа гласит, что температурный коэффициент теплового эффекта химической реакции равен изменению теплоёмкости системы в ходе реакции. Уравнение Кирхгофа, являющееся следствием этого закона используется для расчёта тепловых эффектов при разных температурах.

Дифференциальная форма закона:

Интегральная форма закона:

где и — изобарная и изохорная теплоёмкости, — разность изобарных

теплоёмкостей продуктов реакции и исходных веществ, — разность изохорных

теплоёмкостей продуктов реакции и исходных веществ, а и — соответствующие тепловые эффекты.

Теплоемкость-количество теплоты, необходимое для повышения температуры вещества на 1 градус.

Истинная теплоемкость- количество теплоты(бесконечно малое), которое необходимо для бесконечно малого изменения температуры.

Если разница невелика, то можно принять и , соответственно интегральная форма уравнений примет следующий вид:

При большой разнице температур необходимо учитывать температурные зависимости теплоёмкостей: и

Для практических расчетов теплоемкость выражают в виде зависимости степенного ряда от температуры:



∆Cp=∆a+∆bT+∆cT2+∆c’T-2

Энтальпия

Энтальпи́я, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия — это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Определением этой величины служит тождество: H=U+PV

Размерность энтальпии-Дж/моль.

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса:

В термодинамической системе выделяющуюся теплоту химического процесса условились считать отрицательной (экзотермический процесс, ΔH < 0), а поглощение системой теплоты соответствует эндотермическому процессу, ΔH > 0.

Энтропия

Основное содержание второго начала термодинамики заключается в постулировании существования функции, называемой энтропией S, которая для обратимых процессов определяется по уравнению

а для самопроизвольных

Изменение энтропии реакции можно рассчитать по формуле

Зависимость изменения энтропии от температуры выражается законом Кирхгофа:

Для изолированной системы изменение энтропии – критерий возможности самопроизвольного протекания процесса. Если , то процесс возможен; если , то в прямом направлении процесс невозможен; если , то в системе равновесие.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.