Сделай Сам Свою Работу на 5

Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей





Вязкость (внутреннее трение) —это свой­ство реальных жидкостей оказывать со­противление перемещению одной части жидкости относительно другой. При пере­мещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по ка­сательной к поверхности слоев. Действие этих сил проявляется в том, что со сторо­ны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоря­ющая сила. Со стороны же слоя, движу­щегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Сила внутреннего трения F тем боль­ше, чем больше рассматриваемая площадь поверхности слоя S (рис. 52), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою.

На рисунке представлены два слоя, отстоящие друг от друга на расстоя­нии Dх и движущиеся со скоростями v1 и v2 При этом v1-v2 = Dv. Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Величина Dv/Dx показывает, как быстро меняется скорость при перехо­де от слоя к слою в направлении х, пер­пендикулярном направлению движения слоев, и называется градиентом скорости.Таким образом, модуль силы внутреннего трения



где коэффициент пропорциональности h, зависящий от природы жидкости, называ­ется динамической вязкостью(или просто вязкостью).

Единица вязкости — паскаль•секунда (Па•с):1 Па•с равен динамической вязко­сти среды, в которой при ламинарном те­чении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения в 1 Н на 1 м2 поверх­ности касания слоев (1 Па•с=1 Н•с/м2).

Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от темпера­туры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей т] с увеличением температуры уменьшается, у газов, наоборот, увеличи­вается), что указывает на различие в них механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18—40 °Спадает в че­тыре раза. Советский физик П. Л. Капица (1894—1984; Нобелевская премия 1978г.) открыл, что при температуре 2,17 К жид­кий гелий переходит в сверхтекучее со­стояние, в котором его вязкость равна нулю.



Существует два режима течения жид­костей. Течение называется ламинарным (слоистым),если вдоль потока каждый выделенный тонкий слой скользит относи­тельно соседних, не перемешиваясь с ни­ми, и турбулентным (вихревым),если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблю­дается при небольших скоростях ее дви­жения. Внешний слой жидкости, примыка­ющий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.

При турбулентном течении частицы жидкости приобретают составляющие ско­ростей, перпендикулярные течению, поэто­му они могут переходить из одного слоя в другой. Скорость частиц жидкости быст­ро возрастает по мере удаления от по­верхности трубы, затем изменяется дово­льно незначительно. Так как частицы жид­кости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента

скоростей у поверхности трубы обычно происходит образование вихрей.

Профиль усредненной скорости при турбулентном течении в трубах ;(рис. 53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения.

Английский ученый О. Рейнольдс (1842—1912) в 1883 г. установил, что ха­рактер течения зависит от безразмерной величины, называемой числом Рейнольдса:

где v = h/r — кинематическая вязкость;

r — плотность жидкости; (v)—средняя по сечению трубы скорость жидкости; d — характерный линейный размер, например диаметр трубы.

При малых значениях числа Рейнольдса (Re£1000) наблюдается ламинарное течение, переход от ламинарного течения к турбулентному происходит в области 1000£:Re£2000, а при Re = 2300 (для гладких труб) течение — турбулентное. Если число Рейнольдса одинаково, то ре­жим течения различных жидкостей (га­зов) в трубах разных сечений одинаков.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.