Сделай Сам Свою Работу на 5

Собственные числа и собственные вектора





Для анализа внутренней структуры линейного преобразования целесообразно найти вектора, которые данное преобразование изменяет наиболее просто. Таким свойством обладают собственные вектора матрицы, удовлетворяющие соотношению

,

где l - коэффициент, показывающий изменения длины вектора, т.е. образ вектора совпадает с прообразом по направлению и отличается от него лишь длиной.

Умножим представленное соотношение слева на единичную матрицу E и перенесем все члены в левую часть.

Матрица называется характеристической матрицей. Очевидно, что она имеет вид:

Для вычисления вектора нужно решить систему . Эта система однородна (в правой части стоит нулевой вектор) и имеет ненулевое решение только тогда, когда определитель матрицы равен нулю ( ). В этом случае в матрице есть линейно зависимая строка, а в системе уравнений – линейно-зависимое уравнение. Удалив это уравнение и задав произвольное значение одной из координат вектора , решением оставшейся части системы можно найти остальные координаты .

Для того чтобы найти значение числа l, при котором определитель обратился в ноль, нужно аналитически выписать определитель матрицы, приводя подобные члены относительно степеней l. В общем случае для матрицы размерностью nполучим характеристическое уравнение степени n:



.

Известно, что решением уравнения степени nявляется n значений . Числа li называются собственными числами (значениями) матрицы. Обычно li располагают в ряд по уменьшению модуля, при этом максимальное значение обозначают через l1 , а минимальное через ln .

Пусть в качестве базиса принята совокупность собственных векторов и вектор имеет в этой системе координаты , . Тогда . Поскольку то , т.е. при линейном преобразовании координаты вектора по величине сокращаются (li < 1) или удлиняются (li > 1) пропорционально собственным числам. Линейное преобразование в базисе собственных векторов имеет диагональную матрицу

.

Если собственные числа li различны, то собственные вектора линейно-независимы. Отметим, что если является собственным вектором, то любой вектор также будет собственным вектором, т.е. для каждого li имеется не один собственный вектор, а бесчисленное множество векторов, лежащих на одном и том же направлении.



Таким образом, в базисе из линейно-независимых собственных векторов матрица линейного преобразования преобразует вектор путем растяжения, сжатия или разворота (l<0) координат вектора (умножение проекций на соответствующие собственные числа).

Пример: Найти собственные числа и собственные вектора матрицы .

Характеристическая матрица имеет вид

Приравнивая нулю определитель матрицы , получим характеристическое уравнение, из которого можно найти собственные числа

. Отсюда .

Вычисление собственных векторов. Первый собственный вектор может быть найден из уравнения , или

.

Последнее матричное уравнение эквивалентно системе:

.

Нетрудно видеть, что уравнения линейно-зависимы, следовательно, любое из них, например второе, можно удалить. Тогда . Задавая , получим . Отсюда вектор .

Уравнение для второго собственного вектора приводит к системе:

Отбрасываем второе уравнение, задав , получим , т.е. .

Рис. 7.7

Найденные вектора представлены на рис. 7.7.

 

Т.к. матрица А симметрична, то исходный ортонормированный базис преобразуется в ортогональный (можно сделать ортонормированным, поделив каждый вектор нового базиса на его длину).

Рассмотрим некоторый вектор и найдем его образ под действием матрицы :

В результате получаем вектор большей длины, расположенный под углом с исходным вектором (рис. 7.8).

Тот же вектор можно получить другим способом. Найдем проекции (OB, CB) вектора на собственные вектора и (числа a и b). Линейное преобразование заключается в умножении первой проекции (a) на первое собственное число , и второй проекции на величину . Геометрически складывая преобразованные проекции (OD и DE), получаем тот же вектор . Аналогично преобразуется любой иной вектор, лежащий на плоскости .



 

Рис. 7.8. Линейное преобразование в координатах собственных векторов

Если взять множество векторов, лежащих концами на единичной окружности, то матрица линейного преобразования будет в 3 раза вытягивать проекции на вектор и оставлять неизменными (l2 = 1) проекции на . В результате окружность растягивается в эллипс. Таким образом, собственные числа и собственные вектора дают характеристику преобразования исходного пространства векторов.

Преобразование подобия

Совокупность линейно-независимых собственных векторов образует базис. При этом матрица перехода из исходного базиса в новый представляется совокупностью координат собственных векторов в исходном базисе

.

Соотношения в матричном виде можно представить как

, (7.8)

где - диагональная матрица из собственных чисел: = .

Нельзя писать , так как , что не соответствует действительности, и, кроме того, при умножении матрицы H на справа действительно, каждый собственный вектор (столбец матрицы H) умножается на соответствующее собственное число

,

в то время как умножение на диагональную матрицу слева равносильно умножению на коэффициенты строк, а не столбцов, что противоречит математическому смыслу собственных векторов:

.

Умножив уравнение (7.8) сначала справа, а затем слева на матрицу , получим

; . (7.9)

МатрицыАи L представляют собой одно и то же линейное преобразование, записанное в различных системах координат. Матрица А показывает преобразование в координатах базиса , а матрица L показывает тоже преобразование в координатах базиса .

Итак, одному и тому же линейному преобразованию в разных базисах соответствует отличающиеся матрицы.

Базис1: A, ,

Базис 2: - L ,

Базис 3: , ,

где B= , (см.п.7.2)

Матрицы А и L называются подобными, т.к. соответствуют одному и тому же преобразованию. Определители этих матриц равны. Отсюда определитель матрицы равен произведению всех его собственных чисел

.

Структурная диаграмма преобразования векторов представлена на рис. 7.9. В частности, если требуется преобразовать вектор из базиса в базис , то необходимо умножить его на матрицу H-1.

Рис. 7.9. Преобразование векторов

С помощью данной диаграммы легко получается соотношение подобия (7.9), которое показывает переход от вектора к его образу по и против часовой стрелки.

Норма матрицы

Первое (максимальное) собственное число характеризует максимальное растяжение (при >1) или минимальное сжатие (при <1) вектора. Поскольку вычисления собственных чисел для матрицы большой размерности представляют значительные трудности, на практике часто используют оценку числовой характеристикой матрицы, называемой нормой матрицы , .

Норма матрицы является одной из характеристик матрицы. Поскольку матрица является отражением некоторого линейного преобразования, то неудивительно, что норма матрицы теоретически определяется через линейное преобразование верхней границей изменения длины вектора (представленный ниже оператор sup обозначает точную верхнюю границу)

,

т.е. норма матрицы характеризуется максимальным по модулю образом единичного вектора. Отсюда понятно соотношение .

Используются три способа вычисления нормы матрицы.

1. Кубическая норма (норма по строкам) равна максимальной сумме модулей элементов строк ,.

2. Октаэдрическая норма (норма по столбцам) равна максимальной сумме модулей элементов столбцов, .

3. Сферическая норма (Евклидова норма). .

Свойства норм матрицы:

Для любой симметричной матрицы .

Сжимающее отображение

Преобразование (отображение) называется сжимающим, если . Это справедливо при или .

Для оценки , характеризующего максимальную степень сжатия, необходимо отметить, что переход от образа к прообразу связан с матрицей А-1.

.

В правой части записано представление прообраза вектора через его образ. Поскольку матрице А-1 соответствует матрица -1 с элементами , то - максимальное собственное число для обратной матрицы А-1 и .

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.