Сделай Сам Свою Работу на 5

Доказательство на основе понятия расстояния от вектора до подпространства





Рассмотрим матрицу, построенную на векторах = , = . Объем фигуры (параллелограмма), построенной на данных векторах определяется произведением модуля вектора (объемфигуры векторного подпространства R1 меньшей размерности) на высоту h (минимальное расстояние от вектора R1 до подпространства R1, образованного вектором .

В подпространстве R1 найдется такой вектор R1, которому соответствует разность - , модуль которой определяет высоту h. В свою очередь, вектор является, во-первых частью , =λ , а, во-вторых,проекцией на

Исходя из определения скалярного произведения можно записать

.

Отсюда

= (7.4)

В последнем выражении второй сомножитель является единичным вектором, направленным вдоль вектора , и служит для преобразования скалярной величины (проекция) в векторную. Так как =λ , то

, (7.5)

а квадрат расстояния от до подпространства, образованного вектором

. (7.6)

При этом квадрат объема параллелепипеда

. (7.7)

Подставляя координаты векторов, получаем

.

что и требовалось доказать. Доказательство идентичности детерминанта матрицы и объема параллелепипеда на пространстве большей размерности выполняется по индукции, но в силу громоздкости доказательства оно здесь не приводится.



Оптимальное значение коэффициента λ (7.5), соответствующее вектору можно получить, решая оптимизационную задачу.

Минимальное расстояние от вектора до подпространства R1 определяется параметром λ из условия h=| -λ ,|, R1 . Поскольку модуль числа всегда положителен, то это эквивалентно . Дифференцируя данное выражение по λ и приравнивая результат к нулю, получаем

, что совпадает с (7.5).

Доказательство(7.7)на основе формулы площади параллелограмма

Высота h в параллелограмме определяется выражением . При этом

.

Отсюда , что совпадает с (7.7).

Ортогональность столбцов матрицы А

Если столбцы матрицы А ортогональны, то их попарные скалярные произведение равны нулю. При этом для прямоугольного параллелепипеда

Ортонормированность базиса

Математические операции в ортонормированном базисе значительно проще за счет того, что скалярное произведение любых двух векторов базиса равно нулю, а длина каждого вектора равна единице. При этом коэффициенты разложения вектора в упомянутом базисе равны проекциям (скалярному произведению) вектора на единичный орт.



Аппарат минимальных расстояний позволяет выполнить ортогонализацию и нормализацию произвольного базиса. Пусть имеется базис .

В качестве первого вектора ортонормированного базиса выбирается вектор . Вторым вектором является нормированный вектор , определяющий минимальное расстояние от до , . Подобно (7.5) определяется коэффициент λ. Отсюда вектор . Аналогично, , где , т.е. определяется минимальным расстоянием до подпространства, порожденного векторами с ортонормированным базисом . Распространяя данную процедуру, получаем , где .

Очевидно, что если , то , . Это замечание делает понятным геометрический смысл особенностей матриц и линейных преобразований с определителем, равным нулю. Если матрица Аимеет определитель, равный нулю, то преобразование, соответствующее матрице А, переводит вектора исходного пространства в вектора подпространства меньшей размерности. В самом деле, поскольку определитель равен по модулю объему параллелепипеда, построенного на образах единичных координатных векторов, то в случае det A = 0 расстояние от конца хотя бы одного вектора до подпространства предыдущих векторов равно нулю. Следовательно, принадлежит подпространству i-1векторов. А это в свою очередь означает, что пространство образов имеет уже не n независимых векторов, а меньшее количество и является подпространством исходного пространства.



Пример. Выполнить ортогонализацию векторов .

Рис. 7.6. Ортогонализация

Первый вектор нового базиса . Перпендикулярный вектор .

Второй нормированный вектор нового базиса

.

Новый ортонормированный базис представлен на рис. 7.6.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.