Сделай Сам Свою Работу на 5

Опишите состав и структуру материалов для изготовления режущего инструмента.





Режущий инструмент работает в условиях длительного контакта и трения с обрабатываемым металлом. В процессе эксплуатации должны сохраняться неизменными конфигурация и свойства режущей кромки. Материал для изготовления режущего инструмента должен обладать высокой твердостью и износостойкостью — способностью длительное время сохранять режущие свойства кромки в условиях трения. Вместе с тем, режущий инструмент должен обладать высокой прочностью и достаточной вязкостью, чтобы сохранять форму режущей кромки и сопротивляться разрушению при изгибающем (резцы) и крутящем (сверла) моментах и динамических нагрузках.

В процессе резания происходит нагрев режущей кромки инструмента. Поэтому основным требованием, предъявляемым к инструментальным материалам, является высокая теплостойкость (красностойкость) — способность сохранять твердость и режущие свойства при длительном нагреве в процессе работы. По теплостойкости применяемые материалы подразделяются на: углеродистые и низколегированные стали с теплостойкостью до 200 °С (нетеплостойкие); среднелегированные стали с теплостойкостью до 400–500 °С (полутеплостойкие); высоколегированные быстрорежущие стали с теплостойкостью до 600–640 °С (теплостойкие); твердые сплавы с теплостойкостью до 800–1000 °С; особотвердые материалы с теплостойкостью до 1200 °С. Углеродистые стали поставляются после отжига на зернистый перлит, что позволяет получать при последующей термообработке наиболее однородные свойства. Благодаря невысокой твердости (НВ 187–217) эти стали в отожженном состоянии хорошо обрабатываются резанием и деформируются, что позволяет применять накатку, насечку и другие высокопроизводительные процессы изготовления инструмента. Металлопродукцию из этих сталей выпускают в прутках, полосах и мотках (проволока).



 

52. Опишите свойства цветных металлов и их сплавов. Укажите области применения медных и …

К цветным металлам* и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Алюминий — металл серебристо-белого цвета, очень легкий (плотность 2200 кг/м3), пластичный, малопрочный, мягкий. Вследствие высокой пластичности в отожженном состоянии алюминий может легко обрабатываться давлением. Алюминиевые литейные сплавы используют для изготовления корпусов мясорубок, соковыжималок, деталей ножей, столовых и оконных приборов, инструментов, а также отдельных узлов бытовых машин. Цинк – металл светло—серо—голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до 100–150 °C становится пластичным. Хром — серебристо-белый метал, плотностью 7140 кг/м3. Имеет высокую температуру плавления (1830 °С), устойчив к действию атмосферы, воды, щелочей, органических и минеральных кислот. Обладает высокой твердостью и хрупкостью. Хром используют для защитно-декоративных покрытий и легирования сталей, получения медно-никелевых сплавов. Хромовые покрытия обладают особенной износостойкостью и долговечностью. Никель — серебристо-белый с голубоватым оттенком металл. Имеет плотность 8920 кг/м3, характеризуется пластичностью, тугоплавкостью (температура плавления 1453 °С), достаточной механической прочностью. Обладает устойчивостью к атмосферным воздействиям, к воде, органическим и минеральным (кроме азотной) кислотам, не оказывает отрицательного влияния на вкус, цвет, запах, питательную ценность пищи. Никель широко используют для получения защитно-декоративных покрытий стали, латуни и других металлов, а также для легирования сталей, получения нихромов, мельхиора, незильбера и др. Титан — серебристо-белый, легкий (плотность 4500 кг/м3), прочный, тугоплавкий (1665°С), коррозионностойкий металл. По прочностным свойствам титан соответствует конструкционным сталям, а по коррозионной стойкости превосходит высоколегированные нержавеющие стали. Медь и ее сплавы. Медь представляет собой металл красного цвета с температурой плавления 1083 °С, плотностью 8940 кг/м3 обладает высокой электропроводностью, используется как проводниковый материал. В бытовых изделиях применяют сплавы меди — латуни, бронзы и др.





 

53. Опишите строение, свойства и области применения композиционных материалов. Многокомпонентные материалы, состоящие из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и т.д. называют композитными материалами или композитами. КМ состоят из сравнительно пластичного матричного материала-основы и более твердых и прочных компонентов, являющихся наполнителями. Свойства КМ зависят от свойств основы, наполнителей и прочности связи между ними.Матрица связывает композицию в монолит, придает ей форму и служит для передачи внешних нагрузок арматуре из наполнителей. В зависимости от материала основы различают КМ с металлической матрицей, или металлические композиционные материалы (МКМ), с полимерной – полимерные композиционные материалы (ПКМ) и с керамической – керамические композиционные материалы(ККМ).Ведущую роль в упрочнении КМ играют наполнители, часто называемыеупрочнителями. Они имеют высокую прочность, твердость и модуль упругости. По типу упрочняющих наполнителей КМ подразделяют на дисперсноупрочненные, волокнистые и слоистые. Свойства:Высокая предельная прочность на разрыв;Отсутствие коррозии;Высокий предел выносливости;Низкий вес (неувеличение веса конструкции); Линейно упругие до разрушения;Легкая укладка.Применение: в авиации для высоконагруженных деталей самолетов (обшивки,лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора итурбины и т. д.), в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов,бамперов и т. д., в горной промышленности (буровой инструмент, деталикомбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементысборных конструкций высотных сооружений и т. д.) и в других областяхнародного хозяйства.

 

54. Укажите основные методы получения композиционных материалов на неметаллической…

Все композиционные материалы на неметаллической основе делят на пресс-порошки и пресс-материалы. Пресс-порошками называют композиционные пластмассы с порошкообразным органическим (древесная мука, целлюлоза) или минеральным наполнителем. Пресс-материалы–это пластмассы с волокнистым наполнителем (хлопковые очёсы ; асбестовые, стеклянные, хлопчатобумажные волокна и др.) В качестве связующего применяют различные полимеры–синтетические смолы: фенолоформальдегидные, карбамидные, эпоксидные, полиэфирные, кремнийорганические и другие. Одним из методов получения композиционных материалов на металлической основе является спекание. При спекании увеличивается поверхность контакта частиц, а также плотность материала и его прочность. В начальной стадии спекания снимаются наклеп и остаточные напряжения (возникшие при прессовании), что сопровождается ослаблением физического контакта между частицами, при этом относительная плотность остается практически неизменной. По достижении температуры, составляющей примерно половину температуры плавления, развиваются процессы восстановления оксидов и удаления из прессовки газообразных продуктов; снижение или повышение плотности на этом этапе зависит от начального количества оксидов и характера порообразования, препятствующего (при закрытых порах) или способствующего (при открытых порах) удалению газов. На последнем − высокотемпературном – этапе спекания идет диффузионная рекристаллизация с полным развитием металлических контактов, что сопровождается уплотнением материала. Стеклянные волокна широко применяют при создании композитов с неметаллической матрицей. При малой плотности они имеют высокие прочность и теплостойкость, нейтральны к хим и биологическому воздействиям. Непрерывные волокна получают вытягиванием расплавленной стекломассы через фильеры диаметром 0,8…3 мм и последующим быстрым вытягиванием их до диаметра 3…19 мкм. Поверхность стеклянных волокон покрывают замасливателем (н-р, парафиновой эмульсией) для предотвращения истирания волокон при транспортировке и технологических операциях.

 

55. Укажите основные методы получения композиционных материалов на металлической ….

При создании композитов на основе металлов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Наполнителем служат или высокопрочные волокна, или тугоплавкие, не растворяющиеся в основном металле частицы различной дисперсности. Армирование металлов волокнами, нитевидными кристаллами, проволокой значительно повышает как прочность, так и жаростойкость металла. Например, сплавы алюминия, армированные волокнами бора, можно эксплуатировать при температурах до 450–500° С, вместо 250–300° С. Применяют оксидные, боридные, карбидные, нитридные металлические наполнители, углеродные волокна. Керамические и оксидные волокна из-за своей хрупкости не допускают пластическую деформацию материала, что создает значительные технологические трудности при изготовлении изделий, тогда как использование более пластичных металлических наполнителей позволяет переформование. Получают такие композиты пропитыванием пучков волокон расплавами металлов, электроосаждением, смешением с порошком металла и последующим спеканием и т.д. Нитевидные кристаллы получают, протягивая расплав через фильеры. Используются «усы» оксида алюминия, оксида бериллия, карбидов бора и кремния, нитридов алюминия и кремния и т.д. длиной 0,3–15 мм и диаметром 1–30 мкм. Армирование «усами» позволяет значительно увеличить прочность материала и повысить его жаростойкость. Например, предел текучести композита из серебра, содержащего 24% «усов» оксида алюминия, в 30 раз превышает предел текучести серебра и в 2 раза – других композиционных материалов на основе серебра. Армирование «усами» оксида алюминия материалов на основе вольфрама и молибдена вдвое увеличило их прочность при температуре 1650° С, что позволяет использовать эти материалы для изготовления сопел ракет.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.