Сделай Сам Свою Работу на 5

Противоречия современной науки





Фрагментарность — изучение по фрагментам.

1)анализ-отчленение отдельного предмета

2)синтез — из кусков составляют объект

!но нарушается связь→нарушение экологической обстановки

Научно-техническая революция, коренное, качественное преобразование производительных сил на основе превращения науки в ведущий фактор развития общественного производства. В ходе Н.-т. р., начало которой относится к середине 20 в., бурно развивается и завершается процесс превращения науки в непосредственную производительную силу. Н.-т. р. изменяет весь облик общественного производства, условия, характер и содержание труда, структуру производительных сил, общественного разделения труда, отраслевую и профессиональную структуру общества, ведёт к быстрому росту производительности труда, оказывает воздействие на все стороны жизни общества, включая культуру, быт, психологию людей, взаимоотношение общества с природой, ведёт к резкому ускорению научно-технического прогресса.Н.-т. р. является закономерным этапом человеческой истории, характерным для эпохи перехода от капитализма к коммунизму. Она представляет собой мировое явление, но формы её проявления, её течение и последствия в социалистических и капиталистических странах принципиально различны.



 

 

4.

К основным формам ествественонаучного познания относятся проблема, гипотеза, теория, закон. Проблема это ситуация связанная с недостатком информации, который не позволяет объяснить определенный факт, событие или явление. Проблема считается исходной точкой научного исследования, а правильная постановка проблемы во многом обеспечивает успех научного исследования.

Для решения проблемы используется гипотеза, которая представляет собой первичные предположения имеющее вероятностный характер. Как правило для решения научной проблемы одновременно выдвигаются несколько гипотез, которые должны соответствовать следующим основным требованиям:

-гипотезы должны быть простые

-гипотезы должны базироваться на существующей научной теории

-каждая гипотеза должна предоставлять возможность практической проверки

Если гипотеза происходит проверку практикой, то она становится теорией.



Теория-это совокупность наиболее общих положений, взглядов и концепции объясняющих структуру объекта действительности его свойства и отношения.

Теория, так же как и гипотеза может быть общей и частной. Общая теория действует во всем научном познании, а частные теории работают только в одной отросли науки. Теория имеет относительный характер, но если она справедлива на протяжении деятельности периода времени в отношении большего числа объекта, она становится законом

 

 

5.

К основным теоретическим методам относится:

Дедукция-это мысленный переход от общего к частному.

Индукция-мысленный переход от частного к общему

Абстрагирование и идеализация- это выделение для изучения одних свойств объекта и отказ от изучения других свойств

Идеализация является крайней разновидностью абстракций.

Формализация-это перевод результатов научного исследования на формальный язык символов

К смешанным методам применяемым в естествознании относится:

Анализ- это разделение объекта на составные части и изучение каждой из них в отдельности.

Синтез- это мысленно или фактически объединение частей, для изучения их как единого целого

Сравнение- это поиск сходства или различия между объектами

Моделирование- это построение масштабной копии объекта действительности, сохраняющее его основные свойства.

 

 

6.

К эмпирическим методам относится:

Наблюдение-это чувственное восприятие объектов действительности связанное с оценкой их качественных и количественных характеристик.



Наблюдение может быть прямым и косвенным.

Измерение-это метод исследования с помощью которого определяются только количественный характеристики объекта.

Измерение всегда предполагает наличие определенной единицы может быть фундаментальной и произвольной

Эксперимент- это создание целенаправленных условий для изучения строго определенных свойств объекта с применением лабораторного оборудования.

Эксперимент как метод включает в себя наблюдение и измерение, добавляет к ним описание. Для того что бы правильно провести эксперимент и получить достоверные результаты надо:

_сформулировать цель и задачи эксперимента

_определить последовательность действий

_подобрать необходимое лабораторное оборудование

_подобрать квалифицированный персонал

 

7.

История естествознания: возникновение и отличительные особенности научной деятельности. По вопросу о происхождении науки существуют две противоположные точки зрения. Сторонники первой точки зрения считают научным всякое обобщенное знание и утверждают, что наука возникла в период, когда человек стал делать первые орудия труда. Другая крайняя точка зрения относит происхождение науки к довольно позднему периоду (XV-XVIII вв.), когда появилось экспериментальное естествознание. Современное науковедение не дает однозначного ответа на этот вопрос, т. к. из разного понимания сущности науки вытекают различные даты ее возникновения:
1. если считать науку формой общественного сознания, то наука возникла в Древней Греции;
2. если понимать науку как всякое обобщенное знание и деятельность по производству этих знаний, то наука возникла в начале становления человеческой культуры;
3. если считать науку социальным институтом, то возникновение науки относится к Новому времени;
4. как система подготовки научных кадров наука возникла с середины XIX века;
5. как производительная сила наука возникла со второй половины ХХ века.
Различное время рождения имеют и конкретные науки. Так, математика возникла в период Античности, естествознание - в Новое время, общественные науки - в XIX веке.
Для решения этого вопроса необходимо выделить критерии науки:

· наличие социального запроса на научные знания;

· выделение особой группы людей, занимающихся наукой;

· возможность накопления научных знаний (на основе письменности)

· разработка познавательных приемов (сравнение, доказательство, анализ).

 

 

8.

Согласно основным точкам зрения, наука-

 

совокупность знаний и деятельность по производству этих знаний;
форма общественного сознания;
социальный институт;
непосредственная производительная сила общества;
система профессиональной подготовки и воспроизводства кадров.

Существуют различные точки отсчета развития науки:

 

наука, как система подготовки кадров существует с середины 19 века;
как непосредственная производительная сила общества – со второй половины 19 века;
как институт – в новое время;
как знания и деятельность по производству этих знаний – с начала человеческой культуры.

Наука – это сложное многогранное общественное явление. Вне общества наука не может ни возникать, ни развиваться. Но наука появляется тогда, когда для этого создаются особые объективные условия. Четкий социальный запрос на объект знания; социальная возможность выделения отдельной группы людей, чьей главной задачей становится ответ на этот вопрос; начинавшееся разделение труда внутри этой группы; накопление знаний; навыков, познавательных приемов, которые и подготавливают процесс распространения и нового вида знания – объективных общезначимых истин науки. Совокупность условий, а также появление в культуре человеческого общества самостоятельной сферы, отвечающей критериям научности, складываются в Древней Греции в 17-18 веках до нашей эры. Именно между 7- 4 веками до нашей эры накопленные греками знания, появляются характеристики и свойства, которые позволяют говорить о греческом комплексе знаний о природе как о науке. Все науки и научные теории выражают на базе определенных научных доктрин. Образуются правовые и политические институты с принципами человеческого достоинства, защиты его прав и свобод, имущества и других интересов.
Люди, входящие в интеллектуальную сферу мели право выражать свои мнения и различные научные предположения и высказывания. Так появилась наука как доказательное мышление и знание.
Занятиями, достойными свободного человека в Древней Греции считались политика, война, философия, искусство, наука. Наука, занятие свободного человека резко расходится с ремеслом- занятием рабов. Это был важный шаг в становлении науки.
Древняя Греция с 7 века до нашей эры и греческие колонии на побережье Средиземного, Черного и Азовского морей и бассейнов их рек перестают быть аграрными государствами. Земледелие перестает быть господствующей отраслью экономики. Высокого развития достигают ремесла, торговля, денежные отношения. Строй рабовладельческой демократии становится господствующим, разворачивается борьба партий. Вводятся письменные законы, устанавливаются контакты с высококультурными соседями. В связи с этим у греков меняется тип и способ мышления, взгляды на жизнь, возникают философские идеи.
Мысль у греков стала рассматриваться как объективная реальность. Греческая мысль отличается стремлением к точному познанию действительности, доказательству. Критический дух и смелость выводов. Это объясняет независимость греческой науки и мифологии, из которой они вышли. В Греции хорошо была развита мифология - различные сказания и писания о виртуальных, абстрактных, сказочных несуществующих существах, их деятельности и нравах.
Миф – это многофункциональное и многослойное образование, это обобщенное отражение действительности в фантастическом виде неких одушевленных существ. Он резко отличается от понятийного мышления тем, что всегда принимается за правду, даже если не правдоподобен. Мир мифа одновременно связывает человека с двумя мирами – реальным и сакральным. (Божественным). Мифология – это форма практического духовного освоения мира. В античной Греции параллельно существуют 2 отрасли культуры: магия и наука. Это 2 параллельных способа познания мира.
Эпоха античности дала и миру произведения, научные работы и философские идеологии таких ученых и философов как:
Фалес, Милетский, Анпаксимандр, Анаксагор, Гераклит Эфесский, Диоген, Эпикур, Левкипп, Демокрит, Гипарк, Архимед, Пифагор, Геродот, Гиппократ, Сократ, Протагор, Питак, Периандр, Ксенон, Платон, Аристотель и др.
Фалес Милетский – первый из философов античности, который поставил различные исследования и явления природы на уровень научности. Жил в г. Милеет на полуострове Малая Азия, являвшегося греческой колонией. В своих философских суждениях он выдвинул гипотезу, что причиной мироздания и всего сущего является вода. «Из воды все исходит, и в воду же возвращается»
Он полагал, что все объекты, предметы и вещества материального и духовного мира живой и неживой природы когда-либо произошли из воды, и по окончании своего существования превращаются обратно в воду. Это было первое научное высказывание всего античного мира, которое заложило основу развития философии в целом и естествознания в частности.
Анаксимандр – ученик Фалеса, входивший в «Милетскую школу». В своих философских суждениях возражает Фалесу, полагая, что все предметы и объекты в мире произошли из огня. Он сделал вывод, что огонь является прародителем живых и неживых тел, и что процесс образования планеты и её населения имеет внеземную природу.
Анаксимен – также ученик Фалеса, представитель (милетской школы). Возражая Фалесу и Анаксимандру. Считает, что все произошло из воздуха. По его мнению, воздушная среда является неотъемлемым атрибутом физиологических процессов растений и животных, обмена веществ. Воздух необходим для конденсации воды в атмосфере при испарении и выпадении осадков.
Протагор – основоположник греческой философской концепции по душе: нравственных, морально-этических качествах человека. В свои философских учениях Протагор главную роль отводил самому человеку, его роли и месту в общественной жизни. Он полагал, что только человеку присущи высшие нормы и уровни мышления, сознания, познания, любви, благородства. Человек является высшим разумным существом на планете и может судить о деяниях других по своим критериям. Человек есть мера всех вещей существующих, что существуют и не существующих, что не существуют.
Гераклит Эфесский, 4-5 век до нашей эры, остров Крит, город Эфес (Средиземное море). Принадлежал к царскому роду, но по своим социальным и философским убеждениям отказался от царского трона в пользу своего брата и с группой единомышленников занимался философскими проповедями. Тем не менее, носил царскую одежду и пользовался регалиями и почестями царя.
Он полагал. что все процессы и явления, все тела и судьбы бытия – непостоянны и подвергаются динамическому изменению... Он основал раздел Ф. «диалектика», изучающий стороны и качества материального мира. «Все течет, все изменяется», «Нельзя 2 раза войти в одну и ту же реку», «Ничто не вечно».
Сократ – создатель еще одного ф. направления, изучающего связь и гармонию души и тела, смысл жизни в ф. понимании. Полагал. Что человек для своего морального спокойствия и становления необходимо сочетать удовлетворение материальных и духовных потребностей. Он считал, что человек должен быть гармоничен в моральном и физическом плане и одним «хлебом насущным» не удовлетворить его желания и потребности. Большую роль он отводил вопросам брака, семьи, любви и ублажения. С группой единомышленников ходил по «миру» Греции в поисках истины. В итоге был публично осужден за свои нравоучения и приговорен к смерти. В конечном счете, он испил чашу с ядом, принесенную его учениками и бросился со скалы.
В эпоху античности появились в науке и философии первые научные доктрины (парадигмы). Первой научной доктриной Древней Греции стала математическая доктрина, представленная Пифагором, и позднее развитая Платоном. В её основе, как и в основе других античных доктрин , лежит представление о том, что космос – это упорядоченное выражение целого ряда первоначальных сущностей, которые можно постигать по-разному. Пифагор нашел эти сущности в числах и представил в качестве первоосновы мира. Он полагал, что все объекты и предметы бытия, материального мира, процессы и явления материальных и духовных норм состоят из чисел, цифр, математических и физических формул, математических знаков и операций.
Картина мира, представленная пифагорейцами поражала своей гармонией – протяженный мир тел, подчиненный законам геометрии, движению небесных тел по математическим законам, законам прекрасно устроенного человеческого тела и т.д. Этими доводами он заявил, что ум человека – это не просто зеркало, пассивно отражающее природу, он накладывает свой отпечаток на мир, активно формируя его картину. Свое отношение и завершение математическая доктрина получила в философии Платона, который нарисовал грандиозную картину истинного мира – мира идей представляющую собой иерархически упорядоченную структуру. Эта доктрина заложили основы развития естествознания, опираясь не на материальные стороны вещества (как этот было при Гераклите), а на числовые закономерности бытия.
1. Согласно этой доктрине:

 

Мир – упорядоченный космос, чей порядок сродни порядку внутри человеческого разума. Следовательно, возможен рациональный анализ эмпирического мира.
Упорядоченность космоса является следствием существования некоего всепроникающего разума, наделившего природу назначение и целью.

Второй научной доктриной античности, оказавшей громадное влияние на все последующее развитие науки, стал атомизм. Он стал итогом развития греческой философской традиции. В её основе лежит представление о том, что все предметы и объекты бытия, материального мира состоят из мельчайших микроскопических неделимых частиц – атомов ( с гр. неделимый). Своими корнями атомизм уходит в ионийскую физику и философию элеатов. Проблемы бытия и не бытия, существования и возникновения, множества и числа, делимости и качества – все эти проблемы, затронутые предыдущими школами, нашли свое отражение в системе атомизма. Основателями его стали Левкипп и Демокрит. Согласно этой доктрине, начало всего сущего – это неделимые частицы – атомы и пустота. Ничто не возникает из несуществующего и не уходит в небытие. Возникновение вещей есть соединение атомов, а уничтожение – распадение на части. Атомизм является физической доктриной, только по Демокриту д. объяснить явления физического мира. Причины естественных явлений безличны и имеют физическую природу, их следует искать в земном мире. Познание мира идет путем сочетания чувств, опыта и его рационального преобразования. Атомизм является физической программой и служит инструментом объяснения многочисленных процессов и явлений природы, проходящих на микроуровне.

Доктрина Аристотеля стала третьей научной доктриной античности. Она возникла на переломе эпох. С одной стороны она близка к античной классике, с её стремлением к целостному философскому осмыслению действительности., с другой стороны в ней отчетливо проявляются традиции афинской и эллинской школ. Аристотель возражал Пифагору, Демокриту, Платону, одновременно отказываясь от материальных и атомистических идей, пытаясь найти третий путь. Он понимал, что миропонимание должно происходить путем чувственного познания и логического осмысления.

Аристотель предлагает 4 причины бытия: формальную, материальную. Действующую и целевую. Он создал раздел философии «Метафизика». Этот раздел философии изучает особенности духовного мира, морального и этического путем осмысления сознанием или логикой.
В метафизике Аристотель воссоздает мир как целостное естественно возникшее образование, имеющее причины в себе самом. Заслугой Аристотеля является написание его знаменитого «Органона» - трактата по логике, поставившего науку на прочный фундамент логически обоснованного мышления. Он, кроме того, систематизировал накопленные к этому времени научные знания. Аристотель был крупнейшим ученым и философом античного мира, занимался вопросами политологии правоведения. экономики и торговли. астрофизики. географии и геологии. ботаники и зоологи. физиологи и эволюции. Он дал характеристику и описал известные к тому времени 500 видов растений и животных, расположив их в иерархический таксономический ряд по порядку, согласно уровню организации. Кроме того, Аристотель является основоположником многих перечисленных выше наук.

 

 

9.

Естествознание эпохи Средневековья

Эпоха Средневековья берет свое начало в 478 году нашей эры с момента завоевания немецкими варварами Рима и падения римской империи. Продолжалась более 1000 лет закончилась в середине 15 века.
Средневековое сознание было ориентировано, прежде всего, на межличностные отношения, на эмоциональную сторону жизни. Любая вещь воспринималась с точки зрения ее полезности, без учета ее объективных связей с миром.
В средневековой науке можно выделить три традиции познания:
- Схоластическую традицию, опирающуюся на простейшую логику, предание и умозрение, и ставившую основным вопросом соответствие реального бытия понятиям разума. В основу традиции легли принципы античного платонизма, истолкованные в духе христианства. Главные ее достижения лежат в областях теологии и космологии, в которых предмет познания реально не представлен и разум остается единственным средством анализа предмета на основе умозаключений;
- Герметическую традицию (от имени легендарной «полубожественной» личности из Египта первых веков н.э. Гермеса Трисмегиста – то есть Трижды Величайшего, заложившего основы герметизма), опирающуюся на ритуал, магию, рецептурно - манипуляторное и предметно-преобразовательное начала, сверхъестественные силы. Ритуалы сопровождали почти все действия не только в ремесленно-мануфактурном производстве (отсюда, кстати, берут начало «вольные каменщики» - масоны) и других отраслях хозяйства, но и в политике, юриспруденции, познании мира. Самые яркие воплощения герметизма – средневековые алхимия, астрология, медицина.
- Опытно-эмпирическую традицию, в которой критерием истинности и точкой отсчета был личный опыт. Эта традиция развивалась под влиянием античных естественнонаучных идей Аристотеля. Представители этой традиции видели в научном знании средство расширения практического могущества, улучшения реальной жизни людей.
Роль эпохи средневековья в истории естествознания состоит в умножении связей чувственных образов. Чтобы перейти от них к научному знанию, необходимо было научиться отбирать из этого множества связей те, которые носят существенный, рациональный характер. Такой качественный переход в сознательной деятельности и несла эпоха Ренессанса – Возрождения.

 

 

10.

Три столетия — XVII, XVIII, XIX вв. — охватывает эпоха, получившая название Нового времени. В этом трехсотлет­нем периоде особую роль сыграл XVII век, ознаменовавшийся рождением современной науки, у истоков которой стояли такие выдающиеся ученые, как Галилей и Ньютон.
В учении ^ Галилео Галилея (1564-1642) были заложены основы нового механического естествознания.До Галилея общепринятым в науке считалось понима­ние движения, выработанное Аристотелем и сводившееся к следующему принципу: тело движется только при на­личии внешнего на него воздействия, и, если это воздей­ствие прекращается, тело останавливается. Галилей по­казал, что этот принцип Аристотеля (хотя и согласуется с нашим повседневным опытом) является ошибочным. Вме­сто него Галилей сформулировал совершенно иной прин­цип, получивший впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего дви­жения, если на него не производится какого-либо внеш­него воздействия.Большое значение для становления механики как науки имело исследование Галилеем свободного падения тел. Он установил, что скорость свободного падения тел не зависит от их массы (как думал Аристотель), а пройденный падающим телом путь пропорционален квадрату времени падения. Га­лилей открыл, что траектория брошенного тела, движущего­ся под воздействием начального толчка и земного притяже­ния, является параболой. Галилею принадлежит эксперимен­тальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов.Галилей выработал условия дальнейшего прогресса есте­ствознания, начавшегося в эпоху Нового времени. Он пони­мал, что слепая вера в авторитет Аристотеля сильно тормо­зит развитие науки. Истинное знание, считал Галилей, дос­тижимо исключительно на пути изучения природы при по­мощи наблюдения, опыта (эксперимента) и вооруженного математическим знанием разума.Росту научного авторитета Галилея способствовали его астрономические исследования, обосновывавшие и утверж­давшие гелиоцентрическую систему Коперника. Галилей сумел дать блестящее естественнонаучное доказательство справедливости гелиоцентрической системы в знаменитой работе «Диалог о двух системах мира - Птолемеевской и Коперниковой».Поскольку католической церковью было принято реше­ние о запрещении книги Коперника «Об обращениях небес­ных сфер», а его учение объявлено еретическим, Галилею пришлось предстать перед судом инквизиции. После дли­тельных допросов он был вынужден отречься от учения Ко­перника и принести публичное покаяние.Научная революция XVII в. завершалась творчеством од­ного из величайших ученых в истории человечества, како­вым был ^ Исаак Ньютон (1643-1727). Его научное наследие чрезвычайно разнообразно. В него входит и создание (па­раллельно с Лейбницем, но независимо от него) дифферен­циального и интегрального исчисления, и важные астроно­мические наблюдения (которые Ньютон проводил с помо­щью собственноручно построенных зеркальных телескопов), и большой вклад в развитие оптики (он, в частности, поста­вил опыты в области дисперсии света и дал объяснение это­му явлению). Но самым главным научным достижением Нью­тона было продолжение и завершение дела Галилея по созданию классической механики. Благодаря их трудам XVII в. считается началом длительной эпохи торжества механики, господства механистических представлений о мире.Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки. Данная систе­ма законов движения была дополнена открытым Ньютоном законом всемирного тяготения.Пожалуй, ни одно из всех ранее сделанных научных от­крытий не оказало такого громадного влияния на дальней­шее развитие естествознания, как открытие закона всемир­ного тяготения. Огромное впечатление на ученых произво­дил масштаб обобщения, впервые достигнутый естествозна­нием. Это был поистине универсальный закон природы, ко­торому подчинялось все - малое и большое, земное и небес­ное. Этот закон явился основой создания небесной механи­ки — науки, изучающей движение тел Солнечной системы.
В 1687 году вышел в свет главный труд Ньютона «Мате­матические начала натуральной философии», заложивший основы современной теоретической физики. В своей знаме­нитой работе Ньютон предложил ученому миру научно-ис­следовательскую программу, которая вскоре стала ведущей не только в Англии, на родине великого ученого, но и в континентальной Европе. Свою научную программу Нью­тон назвал «экспериментальной философией», подчеркивая решающее значение опыта, эксперимента в изучении при­роды.
Идеи Ньютона, опиравшиеся на математическую физику и эксперимент, определили направление развития естествоз­нания на многие десятилетия вперед.

 

 

11 Золотой век просвещения – такое название получил период подлинного расцвета классического естествознания, наступившего после ньютонианской революции в физике. Множество открытий и смелых гипотез охватывали области физики, космогонии, биологии и химии, основанные на них изобретения оперативно внедрялись в повседневную жизнь.
Одним из важнейших вопросов в области космогонии стало возникновение Солнечной системы. Иммануил Кант (1724-1804) и Пьер Симон Лаплас (1749-1827) полагали, что все начиналось с газово-пылевой туманности, которая впоследствии превратилась в звезду, вокруг которой вращались планеты.
Идея эволюции коснулась не только космогонии, но и других областей знаний. Особое место эпоха просвещения и XIX век заняли в истории биологической науки. Шведский натуралист Карл Линней (1707-1778) созданием бинарной номенклатуры и своей классификацией подвел итог многовековому эмпирическому накоплению биологических знаний.
Английский натуралист Чарльз Роберт Дарвин (1809-1882), опираясь на результаты наблюдений, накопленных им к 26 годам во время кругосветного путешествия на военном парусном корвете «Бигль» (капитан Р. Фицрой), создал свою теорию естественного отбора.
Антуан-Лоран Лавуазье (1743-1794) в опытах по нагреванию различных веществ в закрытых сосудах установил, что независимо от характера химических процессов и их продуктов, общий вес всех участвующих в реакции веществ не меняется: масса не создается и не уничтожается, а лишь переходит от одного вещества к другому (закон сохранения массы).
До середины XIX в. химия развивалась хаотически: химики открывали новые химические элементы, описывали их свойства, и так накопили огромный эмпирический материал, нуждавшийся в систематизации. Логическим финалом этого процесса стал I Международный химический конгресс (1860, Карслуэ, Германия), на котором окончательно сформулировали и приняли основополагающие принципы, теории и законы химии. С этого момента начался современный период развития химии, в начале которого были разработаны теории валентности, ароматических соединений, стереохимии, электролитической диссоциации Сванте Аррениуса и др. Главным же стало открытие периодического закона.
Дмитрий Иванович Менделеев (1834-1907) – великий русский химик, считал, что любое точное знание – система, в основе которой лежит единый фактор. В качестве главной характеристики химических элементов он выбрал атомный вес. Основываясь на изменении валентности элементов в соответствии с их атомным весом, Менделеев разделил их на периоды. В то время были известны 62 элемента, потому в таблице оказались пустые клетки для еще неоткрытых элементов. Впоследствии их свойства оказались именно такими, как предсказал Менделеев. В начале 1999г. появилось сообщение, что в Дубне синтезирован уже 114 й элемент, живущий около 30 секунд.
Так к XIX вв. постепенно стала утверждаться идея единства и взаимопревращения различных физических процессов, о взаимопревращаемости сил природы.
Трудами врача Томаса Юнга (1773-1829) и физика Огюстена Жака Френеля (1788-1827) окончательно утвердились пробивавшие себе дорогу с ньютонианской поры представления о волновой природе света, который проявлял такие, хорошо известные любителям кругов на воде волновые свойства, как интерференция (наложение волн) и дифракция (огибание препятствий).
В первой половине XIX века, появляются самые разнообразные, изобретения, основанные на новейших открытиях в области естествознания – фотография (метод дагерротипов, изобретенный парижанином Луи Жаком Дагером), пароход, паровоз (изобретенная еще в XVIII веке паровая машина перекочевала с мануфактур и возникающих заводов и фабрик на транспорт). Целый ряд изобретений был связан и с электромагнитными явлениями.
Учение об электричестве и магнетизме в первой половине XVIII века получило развитие. Говоря о развитии электростатики и электродинамики нельзя не упомянуть и опыты итальянского врача и физика Алессандро Вольта (1745-1827), создавшего первый источник постоянного тока – вольтов столб, и, наконец, французского математика и физика Андрэ Мари Ампера (1775-1836), который смог перевести результаты опытов с электричеством на сухой язык математики.
После того, как великий английский физик и химик Майкл Фарадей (1791-1867) обнаружил воздействие магнитного поля на световую волну, стало очевидным тождество электромагнитных и световых волн. Тепловое излучение нагретых тел оказалось подобным свету электромагнитным излучением, но только с большой длиной волны – человеческий глаз не мог ее воспринять как свет.
Новый тип явлений – электромагнитные – потребовал создания новой концепции. Она и была создана Максвеллом на основе опытов Ампера и Фарадея. Язык теории Максвелла был, как и в механике Ньютона, математикой бесконечно малых величин – дифференциальными уравнениями

 

12.

Фундаментальные и прикладные науки.

Установившееся понимание фундаментальной и прикладной науки состоит в следующем.Проблемы, которые ставятся перед учеными извне, называются прикладными. Прикладные науки, таким образом, имеют своей целью осуществление практического применения добытого знания.Проблемы, возникающие внутри самой науки, называются фундаментальными. Таким образом, фундаментальная наука направлена на получение самого знания о мире как такового. Собственно, именно фундаментальные исследования направлены в той или иной мере на решение мировых загадок. Не следует, слово «фундаментальный» смешивать здесь со словом «большой», «важный». Прикладное исследование может иметь очень большое значение как для практической деятельности, так и для самой науки, в то время как фундаментальное исследование может оказаться пустяковым. Здесь очень важно предвидеть, какое значение результаты фундаментального исследования могут иметь в будущем. Так еще в середине 19-го века исследования по электромагнетизму (фундаментальные исследования) считались весьма интересными, но не имеющими никакого практического значения. (При распределении средств на научные исследования руководители, экономисты должны, бесспорно, ориентироваться в определенной мере в современном естествознании, чтобы принять правильное решение).Технология. Прикладная наука тесно связана с технологией. Можно привести два определения технологии: в узком и широком смысле. "Технология - совокупность знаний о способах и средствах проведения производственных процессов, напр. технология металлов, химическая технология, технология строительных работ, биотехнология и т.п., а также сами технологические процессы, при которых происходит качественное изменение обрабатываемого объекта".В широком, философском смысле технология – это обусловленные состоянием знаний и общественной эффективностью способы достижения целей, поставленных обществом". Это определение - достаточно емкое, оно позволяет охватить и биоконструирование, и образование (образовательные технологии), и т.п. Эти "способы" могут меняться от цивилизации к цивилизации, от эпохи к эпохе. (Надо иметь в виду, что в зарубежной литературе «технология» часто понимается как синоним «техники» вообще).

 

 

13.

Нельзя не сказать еще об одном античном ученом, заложившем основы математической физики. Это — Архимед, живший в III в. до н.э. Его труды по физике и механике были исключением из общих правил античной науки, так как он использовал свои знания для построения различных машин и механизмов. Тем не менее, главным для него, как и для других античных ученых, была сама наука. И механика для него становится важным средством решения математических задач. Хотя для Архимеда техника была лишь игрой научного ума, результатом выхода науки за свои рамки (то же отношение к технике и машинам как к игрушкам было характерно для всей эллинистической науки), его работы сыграли основополагающую роль в возникновении таких разделов физики, как статика и гидростатика. В статике Архимед ввел в науку понятие центра тяжести тел, сформулировал закон рычага. В гидростатике он открыл закон, носящий его имя: на тело, погруженное в жидкость, действует выталкивающая сила, равная весу жидкости, вытесненной телом.

 

14.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.