Сделай Сам Свою Работу на 5

Классификация вычислительных сетей





 

В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:

• глобальные сети (WAN — Wide Area Network);

• региональные сети (MAN — Metropolitan Area Network);

• локальные сети (LAN — Local Area Network).

Глобальная вычислительная сеть объединяет абонентов, расположенных в раз­личных странах, на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные вычислительные сети позволят решить проблему объединения информа­ционных ресурсов всего человечества и организации доступа к этим ресурсам.

Региональная вычислительная сеть связывает абонентов, расположенных на зна­чительном расстоянии друг от друга. Она может включать абонентов внутри большого го­рода, экономического региона, отдельной страны. Обычно расстояние между абонентами региональной вычислительной сети составляет десятки — сотни километров.

Локальная вычислительная сеть объединяет абонентов, расположенных в преде­лах небольшой территории. В настоящее время не существует четких ограничений на тер­риториальный разброс абонентов локальной вычислительной сети. Обычно такая сеть привязана к конкретному месту. К классу локальных вычислительных сетей относятся сети отдельных предприятий, фирм, банков, офисов и т.д. Протяженность такой сети можно ограничить пределами 2 - 2,5 км.



Объединение глобальных, региональных и локальных вычислительных сетей позволя­ет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целе­сообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. На рис. 6.4 приведена одна из возможных ие­рархий вычислительных сетей. Локальные вычислительные сети могут входить как компо­ненты в состав региональной сети, региональные сети — объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные струк­туры.

 

Рис. 6.4. Иерархия компьютерных сетей

 

Пример 6.4. Компьютерная сеть Internet является наиболее популярной глобальной сетью. В ее состав входит множество свободно соединенных сетей. Внутри каждой сети, входящей в Internet, существуют конкретная структура связи и определенная дисциплина управления. Внутри Internet структура и методы соединений между раз­личными сетями для конкретного пользователя не имеют никакого значения.



 

Персональные компьютеры, ставшие в настоящее время непременным элементом любой системы управления, привели к буму в области создания локальных вычислитель­ных сетей. Это, в свою очередь, вызвало необходимость в разработке новых информацион­ных технологий.

Практика применения персональных компьютеров в различных отраслях науки, техники и производства показала, что наибольшую эффективность от внедрения вычис­лительной техники обеспечивают не отдельные автономные ПК, а локальные вычисли­тельные сети.

 

ХАРАКТЕРИСТИКА ПРОЦЕССА ПЕРЕДАЧИ ДАННЫХ

 

Режимы передачи данных

 

Любая коммуникационная сеть должна включать следующие основные компоненты: пере­датчик, сообщение, средства передачи, приемник.

Передатчик — устройство, являющееся источником данных.

Приемник— устройство, принимающее данные.

Приемником могут быть компьютер, терминал или какое-либо цифровое устройство.

Сообщение — цифровые данные определенного формата, предназначенные для передачи.

Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение.

Средства передачи — физическая передающая среда и специальная аппаратура, обеспечивающая передачу сообщений.

Для передачи сообщений в вычислительных сетях используются различные типы ка­налов связи. Наиболее распространены выделенные телефонные каналы и специальные ка­налы для передачи цифровой информации. Применяются также радиоканалы и каналы спутниковой связи.



Особняком в этом отношении стоят ЛВС, где в качестве передающей среды использу­ются витая пара проводов, коаксиальный кабель и оптоволоконный кабель.

Для характеристики процесса обмена сообщениями в вычислительной сети по каналам связи используются следующие понятия: режим передачи, код передачи, тип синхрониза­ции.

Режим передачи. Существуют три режима передачи: симплексный, полудуплексный и дуплексный.

Симплексный режим — передача данных только в одном направлении.

Примером симплексного режима передачи (рис. 6.5) является система, в которой ин­формация, собираемая с помощью датчиков, передается для обработки на ЭВМ. В вычисли­тельных сетях симплексная передача практически не используется.

Полудуплексный режим — попеременная передача информации, когда источник и приемник последовательно меняются местами (рис. 6.6).____

Яркий пример работы в полудуплексном режиме — разведчик, передающий в Центр информацию, а затем принимающий инструкции из Центра.

Дуплексный режим — одновременные передача и прием сообщений.

Дуплексный режим (рис. 6.7) является наиболее скоростным режимом работы и позво­ляет эффективно использовать вычислительные возможности быстродействующих ЭВМ в сочетании с высокой скоростью передачи данных по каналам связи. Пример дуплексного режима — телефонный разговор.

 


Рис. 6.5. Симплексный режим передачи

 

Рис. 6.6. Полудуплексный режим передачи


 

 

Рис. 6.7. Дуплексный режим передачи

 

 


Коды передачи данных

 

Для передачи информации по каналам связи используются специальные коды. Коды эти стандартизованы и определены рекомендациями ISO (International Organization for Stand­ardization) — Международной организации по стандартизации (МОС) или Международного консультативного комитета по телефонии и телеграфии (МККТТ).

Наиболее распространенным кодом передачи по каналам связи является код ASCII, принятый для обмена информацией практически во всем мире (отечественный аналог — кодКОИ-7).

Следует обратить внимание еще на один способ связи между ЭВМ, когда ЭВМ объ­единены в комплекс с помощью интерфейсного кабеля и с помощью двухпроводной линии связи.

 

Примечание. Интерфейсный кабель — это набор проводов, по которым пере­даются сигналы от одного устройства компьютера к другому. Чтобы обеспе­чить быстродействие, для каждого сигнала выделен отдельный провод. Сигналы передаются в определенной последовательности и в определенных комбинациях друг с другом.

 

Для передачи кодовой комбинации используется столько линий, сколько битов эта комбинация содержит. Каждый бит передается по отдельному проводу. Это параллельная передача или передача параллельным кодом. Предпочтение такой передаче отдается при организации локальных МВК, для внутренних связей ЭВМ и для небольших расстоя­ний между абонентами сети. Передача параллельным кодом обеспечивает высокое быстро­действие, но требует повышенных затрат на создание физической передающей среды и обладает плохой помехозащищенностью. В вычислительных сетях передача параллельными кодами не используется.

Для передачи кодовой комбинации по двухпроводной линии группа битов передается по одному проводу бит за битом. Это передача информации последовательным кодом. Она, вполне естественно, медленнее, так как требует преобразования данных в параллельный код для дальнейшей обработки в ЭВМ, но экономически более выгодна для передачи сообщений на большие расстояния.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.