Сделай Сам Свою Работу на 5

ЧТО ОЗНАЧАЕТ БЫТЬ РАЗДЕЛЕННЫМ В КВАНТОВОЙ ВСЕЛЕННОЙ?





Ч тобы принять СТО и ОТО, надо отказаться от ньютоновского абсолютного пространства и абсолютного времени. Поскольку это не легко, вы можете потренировать ваш ум, чтобы сделать это. Всякий раз, когда вы перемещаетесь, представьте себе, что вы отодвигаетесь от текущих моментов, переживаемых всеми остальными, которые не движутся вместе с вами. В то время, как вы едете вдоль магистрали, представьте ваши часы, тикающие с отличающимся темпом по сравнению с хронометрами в домах, которые вы проезжаете. Пока вы обозреваете окрестности с вершины горы, представьте, что вследствие деформированного пространства-времени время для вас течет более быстро, чем для тех, кто подвержен действию более сильной гравитации на земле далеко внизу. Я говорю "представьте". Поскольку в обычных обстоятельствах, подобных перечисленным, релятивистские эффекты настолько мизерны, что проходят полностью незамеченными. Таким образом, повседневный опыт не может вскрыть, как на самом деле работает вселенная, и в этом причина, почему за сто лет после Эйнштейна почти никто даже среди профессиональных физиков не ощущает релятивистские эффекты в своих делах. Это не удивительно; затруднительно найти долговечные преимущества, предлагаемые глубоким пониманием теории относительности. Порочные ньютоновские концепции абсолютного пространства и абсолютного времени великолепно работают при малых скоростях и умеренной гравитации, с которыми мы сталкиваемся в повседневной жизни, так что наши чувства находятся в неизменном затруднении, чтобы обнаружить релятивистский мир. Следовательно, требуются глубокая осведомленность и правильное понимание того, что мы усердно используем наш интеллект, чтобы заполнить пробелы, оставляемые нашими чувствами.



В то время, как теория относительности представила монументальный слом традиционных идей о вселенной, другая революция между 1900 и 1930 перевернула физику вверх дном. Она началась на рубеже двадцатого столетия парой статей о свойствах радиации, принадлежащих одна Максу Планку, а другая Эйнштейну; они и привели после тридцати лет интенсивных исследований к формулировке квантовой механики . Как и с теорией относительности, чьи эффекты становятся существенными при экстремальных скоростях или гравитации, новая физика квантовой механики проявляется в полной мере только в другой экстремальной ситуации: в области экстремально малого. Однако есть резкое отличие между потрясениями, вызванными теорией относительности и квантовой механикой. Необычность теории относительности возникает вследствие того, что наши собственные ощущения пространства и времени отличаются от ощущений других. Это необычность, рожденная сравнением. Мы вынуждены признать, что наш взгляд на реальность лишь один из многих, – фактически, из бесконечного числа, – которые все сводятся воедино в рамках монолитного целого пространства-времени.



Квантовая механика иная. Ее необычность ясна вне сравнения. Ввести в ваш ум квантовомеханическую интуицию тяжелее, поскольку квантовая механика разбивает вдребезги нашу собственную, персональную, индивидуальную концепцию реальности.

 

Мир в соответствии с квантовым подходом

Каждая эпоха разрабатывает свои истории и метафоры о том, как была задумана и структурирована вселенная. В соответствии с древнеиндийским мифом творения вселенная была создана, когда боги расчленили изначального гиганта Пурушу, чья голова стала небом, чьи ступни стали землей, а дыхание ветром. По Аристотелю вселенная являлась собранием пятидесяти пяти концентрических кристаллических сфер, самая дальняя из которых от центра была небесами, окружающими планеты, Землю и их элементы, и, наконец, семь кругов ада.[42]Во время Ньютона с его точной, математически определенной формулировкой движения описание опять изменилось. Вселенная была связана с ходом гигантского великого часового механизма: после того, как он был заведен и установлен в исходное состояние, часовой механизм вселенной тикает от одного момента к следующему с совершенной регулярностью и предсказуемостью.



СТО и ОТО отметили важную тонкость метафоры часового механизма: там нет единственных, привилегированных, универсальных часов; там нет согласия о том, что создает момент, что формирует понятие "сейчас". Даже при этих условиях мы все еще говорим об истории эволюционирующей вселенной в терминах часового механизма. Часы это ваши часы. История это ваша история. Но вселенная раскрывается с той же регулярностью и предсказуемостью, как и в ньютоновской системе. Если каким-то образом вы знаете состояние вселенной прямо сейчас, – если вы знаете, где находится каждая частица и как быстро и в каком направлении каждая частица движется, – тогда, Ньютон и Эйнштейн согласны, вы можете, в принципе, использовать законы физики, чтобы предсказать все о вселенной произвольно далеко в будущем или обрисовать, как она выглядела произвольно далеко в прошлом.[43]

Квантовая механика уничтожает эту традицию. Мы не можем когда-либо узнать точное положение и точную скорость даже одной частицы. Мы не можем с полной определенностью предсказать результат даже простейшего эксперимента, не говоря об эволюции целого космоса. Квантовая механика показывает, что лучшее, что мы можем когда-либо сделать, это предсказать вероятность , что эксперимент закончится тем или иным образом. И поскольку квантовая механика проверена в течение десятилетий фантастически точными экспериментами, ньютоновские космические часы, даже с улучшениями Эйнштейна, являются непроверяемой метафорой; они не показывают, как работает мир.

Но разрыв с прошлым еще более полный. Хотя ньютоновская и эйнштейновская теории резко расходятся во взглядах на природу пространства и времени, даже они согласны в определенных базовых фактах, определенных истинах, которые кажутся самоочевидными. Если между двумя объектами есть пространство, – если в небе есть две птицы и одна улетает от вас направо, а вторая налево, – мы можем рассматривать и рассматриваем два объекта независимыми. Мы рассматриваем их как отдельные и отличные сущности. Пространство, как бы оно ни было фундаментально, обеспечивает среду, которая разделяет и различает один объект от другого. Это то, что делает пространство. Тела, занимающие различные положения в пространстве, являются разными телами. Более того, чтобы один объект повлиял на другой, первый должен некоторым образом преодолеть пространство, их разделяющее. Одна птица может полететь к другой, преодолев пространство между ними, и тогда уже клюнуть или подтолкнуть своего компаньона. Одна персона может повлиять на другую путем выстрела из рогатки, заставив камень преодолеть пространство между ними, или путем крика, вызвав эффект домино среди прыгающих молекул воздуха, когда одна толкает следующую, пока некоторые не ударятся в барабанную перепонку адресата. Будучи еще более изощренным, некто может оказать влияние на другого, выстрелив из лазера, вызвав электромагнитную волну – луч света – для преодоления лежащего между ними пространства; или, будучи более претенциозным (как внеземные хулиганы предыдущей главы), он может потрясти или подвигать массивное тело (вроде Луны), послав гравитационное возмущение, проносящееся от одного местоположения к другому. Будьте уверены, если мы находимся здесь, мы можем повлиять на кого-нибудь там, но вне зависимости от того, как мы это делаем, процедура всегда включает кого-нибудь или что-нибудь, передвигающееся отсюда туда, и только когда кто-нибудь или что-нибудь окажется там, влияние может быть оказано.

Физики называют это свойство вселенной локальностью , подчеркивая тот момент, что вы можете непосредственно подвергнуть воздействию только вещи, которые находятся вблизи вас, которые локальны. Культ Вуду оспоривает локальность, поскольку он содержит действие чего-либо здесь и оказание влияния на что-либо там без необходимости чему бы то ни было перемещаться отсюда туда, однако наш общий повседневный опыт приводит нас к мысли, что проверяемые, повторяемые эксперименты будут подтверждать локальность.[44]И в большинстве случаев они это делают.

Однако группа экспериментов, осуществленных в течение последней пары десятилетий, показала, что нечто, что мы делаем здесь (вроде измерения определенных свойств частицы), может быть тонко переплетено с чем-то, что происходит где-то там (вроде результата измерения определенных свойств другой частицы) без пересылания отсюда туда чего бы то ни было. В то время как интуиция заходит в тупик, это явление полностью соответствует законам квантовой механики, и было предсказано с использованием квантовой механики задолго до того, как технология смогла осуществить эксперимент и увидеть, что поразительно, что предсказание точно. Это звучит подобно Вуду; Эйнштейн, который был среди первых физиков, осознавших – и резко критиковавших – это возможное свойство квантовой механики, назвал его "призраком". Но, как мы увидим, дальнодействующие связи, которые подтверждают эти эксперименты, предельно чувствительны и находятся, в точном смысле этого слова, фундаментально за пределами нашей возможности контроля.

Тем не менее, эти результаты, возникшие как из теоретических, так и из экспериментальных исследований, жестко поддерживают заключение, что вселенная допускает взаимосвязи, которые нелокальны.[45]Что-нибудь, что происходит здесь, может быть переплетено с чем-то, что происходит там, даже если ничего не перемещается отсюда туда – и даже если нет достаточно времени для чего бы то ни было, даже света, чтобы переместиться между событиями. Это значит, что пространство не может мыслиться так, как это когда-то делалось: промежуточное пространство безотносительно к тому, как его много, не гарантирует, что два объекта разделены, поскольку квантовая механика позволяет существовать между ними запутыванию, разновидности связи. Частица, подобная одной из бесчисленного количества, из которых состоите вы или я, может передвигаться, но не может спрятяться. В соответствии с квантовой теорией и многочисленными экспериментами, которые подтверждают ее предсказания, квантовые связи между двумя частицами могут сохраняться, даже если они находятся на противоположных концах вселенной. С позиции их запутывания, несмотря на многие триллионы миль пространства между ними, дело обстоит так, как если бы они находились прямо на макушке друг друга.

Из современной физики появляются многочисленные атаки на наше интуитивное понимание реальности; мы будем сталкиваться со многими из них в следующих главах. Но из тех их них, что экспериментально проверены, я не нахожу более поражающих воображение, чем недавнее понимание того, что наша вселенная нелокальна.

 

Красное и синее

Чтобы почувствовать природу нелокальности, возникающей из квантовой механики, представим, что агент Скалли, давно не использовавшая отпуск, уединяется в имении своей семьи в Провансе. Перед тем, как она начинает распаковывать вещи, звонит телефон. Это агент Малдер звонит из Америки.

"Ты получила пакет, обернутый в красную и синюю бумагу?"

Скалли, которая свалила всю свою корреспонденцию в кучу у двери, осматривает ее и видит посылку. "Малдер, пожалуйста, я убралась ко всем чертям не для того, чтобы возиться еще с одной кипой секретных материалов."

" Нет, нет, посылка не от меня. Я получил такую тоже, и внутри нее находятся маленькие защищенные от света титановые коробочки, пронумерованные от 1 до 1000, и письмо, говорящее, что ты получишь идентичную посылку."

"Да, и что?" – Скалли медленно реагирует, начиная опасаться, что титановые коробочки могут каким-то образом повернуться, прервав ее отпуск.

"Хорошо," – продолжает Малдер, – "письмо говорит, что каждая титановая коробочка содержит инопланетную сферу, которая сверкнет красным или синим в момент, когда открыта маленькая дверца на боку коробочки."

"Малдер, предполагается, что я должна быть поражена?"

"Еще нет, но дослушай. Письмо говорит, что до того, как любая данная коробочка открыта, сфера имеет возможность сверкнуть или красным или синим, и она делает выбор хаотически между двумя цветами в момент открытия дверки. Но здесь есть странная часть. Письмо говорит, что хотя твои коробочки работают точно таким же образом, как и мои, – хотя сферы внутри каждой из наших коробочек и выбирают хаотично между красным и синим сверканиями, – наши коробочки неким образом работают в тандеме. Письмо утверждает, что имеется таинственная связь, так что если будет синяя вспышка, когда я открою мою коробочку 1, ты также обнаружишь синюю вспышку, когда ты откроешь твою коробочку 1; если я вижу красную вспышку, когда я открою коробочку 2, ты тоже увидишь красную вспышку в твоей коробочке 2 и так далее."

"Малдер, я действительно измучена; пусть салонные фокусы подождут, пока я вернусь."

"Скалли, пожалуйста. Я знаю, ты в отпуске, но мы не можем просто так оставить это. Нам надо только несколько минут, чтобы убедиться, что это верно."

С неохотой Скалли осознает, что сопротивление бесполезно, так что она идет вперед и открывает свои маленькие коробочки. И, сравнивая цвета, которые вспыхивают внутри каждой коробочки, Скалли и Малдер действительно находят соответствие, предсказанное в письме. Временами сфера в коробочке сверкает красным, временами синим, но при открывании коробочек с одинаковыми номерами Скалли и Малдер всегда видят вспышку одинакового цвета. Малдер приходит во все большее возбуждение и ажиотаж от инопланетных сфер, но Скалли совершенно не впечатляется.

"Малдер," – мрачно говорит в телефон Скалли, – "тебе в самом деле нужен отпуск. Это глупо. Очевидно, что сферы внутри каждой из наших коробочек запрограммированы, чтобы мигать красным, или они зпрограммированы, чтобы мигать синим, когда дверца их коробочки открыта. И кто-то послал нам эти бессмысленно и одинаково запрограммированные коробочки, так что ты и я обнаруживаем одинаковые цвета вспышек в коробочках с одинаковыми номерами."

"Ну нет, Скалли, письмо говорит, что каждая инопланетная сфера случайно выбирает между синими и красными вспышками, когда дверца открыта, а не то, что сфера предварительно запрограммирована на выбор одного или другого цвета."

"Малдер," – вздыхает Скалли, – "мое объяснение имеет безупречный смысл и соответствует всем данным. Чего ты еще хочешь? И взгляни сюда, в конец письма. Это величайшая шутка. "Инопланетяне" информируют нас мелким шрифтом, что вспышка сферы внутри коробочки вызывается не только открыванием дверцы коробочки, но и любые другие действия с коробочкой, направленные на то, чтобы выяснить, как она работает, – например, если мы попробуем выяснить процесс образования цвета или химический состав сферы перед открытием дверцы, – также приведут к вспышке. Другими словами, мы не можем проанализировать предполагаемый случайный выбор красного или синего, поскольку любая такая попытка испортит сам эксперимент, который мы пытаемся провести. Это как если бы я тебе сказала, что я на самом деле блондинка, но я становлюсь рыжей как только ты или кто-нибудь или что-нибудь посмотрит на мои волосы или подвергнет их анализу любым образом. Как ты сможешь подтвердить, что я вру? Твои маленькие зеленые человечки очаровательно остроумны – они все так устроили, что их уловки не могут быть разоблачены. А теперь иди и играй со своими маленькими коробочками, пока я буду наслаждаться маленьким миром и покоем."

Может показаться, что Скалли заняла обоснованную позицию на стороне науки. Однако тут есть одно обстоятельство. Физики, занятые квантовой механикой – ученые, а не инопланетяне – около восьмидесяти лет делали утверждения о том, как работает вселенная, которые полностью соответствовали описанным в письме. Камень преткновения заключается в том, что сейчас имеется строгое научное подтверждение, что точка зрения Малдера – не Скалли – подтверждается данными опыта. Например, в соответствии с квантовой механикой частица может удерживаться в состоянии разрыва между тем, иметь ей одно или другое отдельное свойство – подобно тому, как "инопланетная" сфера находится в неопределенности, мигать красным или мигать синим до открытия дверцы ее коробочки, – и только когда частица увидена (измерена), она хаотично фиксируется в том или ином определенном состоянии. Если это недостаточно странно, квантовая механика еще предсказывает, что могут быть взаимосвязи между частицами, сходные с теми, что объявлены существующими между инопланетными сферами. Две частицы могут быть так переплетены квантовыми эффектами, что их хаотичный выбор между одним или другим свойством скоррелирован: точно как каждая из инопланетных сфер случайно выбирает между красным и синим, а затем каким-то образом цвета, выбранные сферами в коробочках с одинаковыми номерами, оказываются скоррелированными (обе мигают красным или обе мигают синим), свойства, выбранные случайно двумя частицами, даже если они удалены в стороны в пространстве, могут быть подобным образом совершенно упорядочены. Грубо говоря, хотя две частицы удалены друг от друга на большое расстояние, квантовая механика показывает, что что бы ни сделала одна частица, другая сделает связанную вещь.

В качестве конкретного примера, если вы носите пару солнечных очков, квантовая механика показывает, что с вероятностью 50 : 50 отдельный фотон – вроде того, который отразился к вам от поверхности озера или от асфальтовой дороги, – сможет пробраться сквозь ваши уменьшающие яркость поляризованные линзы: когда фотон достигает стекла, он случайным образом "выбирает" между тем, отразиться назад или пройти насквозь. Поразительная вещь в том, что фотон может иметь партнера-фотона, который мчится в милях отсюда в противоположном направлении и, однако, когда он столкнется с той же вероятностью 50 : 50 пройти сквозь другие поляризованные линзы солнечных очков, он каким-то образом повторит все, что бы ни сделал начальный фотон. Даже если каждый результат определен случайным образом и даже если фотоны разнесены в пространстве, если один фотон пройдет насквозь, так же сделает и другой . Это разновидность нелокальности, предсказанная квантовой механикой.

Эйнштейну, который никогда не был большим поклонником квантовой механики, было противно согласиться, что вселенная действует в соответствии с такими причудливыми правилами. Он отстаивал более традиционные объяснения, которые отказывались от утверждения, что частицы хаотично выбирают свои свойства и признаки, когда измеряются. Вместо этого, Эйнштейн утверждал, что если две широко разнесенные в пространстве частицы наблюдаются, чтобы определить некоторые признаки, не понятно, какое таинственное квантовое взаимодействие мгновенно коррелирует их свойства. Уж лучше, точно как доказывала Скалли, что сферы не выбирают случайно между красным и синим, а просто запрограммированы на мигание особым цветом при наблюдении, Эйнштейн заявлял, что частицы не выбирают случайным образом между тем, иметь им одну особенность или другую, а вместо этого сходным образом "программируются", чтобы получить отдельное определенное свойство, когда будет подходящее измерение. Корреляции между поведением сильно удаленных фотонов есть свидетельство того, утверждал Эйнштейн, что фотоны были наделены одинаковыми свойствами в момент испускания, но не того, что они подвержены некоторому причудливому дальнодействующему квантовому запутыванию.

Пока не истекли пятьдесят лет, проблема, кто же прав – Эйнштейн или сторонники квантовой механики, – оставалась нерешенной, поскольку, как мы увидим, дебаты проходили очень похожие на диалог Скалли и Малдера: любая попытка опровергнуть предложенные странные квантовомеханические взаимодействия и оставить нетронутым более традиционный взгляд Эйнштейна приводила к пониманию, что сами эксперименты с необходимостью будут портить те свойства, которые и пытаются изучить. Все это изменилось в 1960е годы. С ошеломляющей проницательностью ирландский физик Джон Белл показал, что проблема может быть решена экспериментально, что и было сделано в 1980е. Наиболее прямое прочтение результата таково, что Эйнштейн ошибался, и в действительности могут иметься странные, таинственные и подобные "призракам" квантовые взаимодействия между вещами здесь и вещами там.[46]

Обоснования, следующие после этого утверждения, столь тонки, что обсуждались физиками более тридцати лет, прежде чем были полностью поняты. Но после осмотра существенных особенностей квантовой механики мы увидим, что главные аргументы сводятся к чему-то, не более сложному, чем детская головоломка.

 

Смотр волн

Если вы посветите лазерной указкой на маленький кусочек черной засвеченной 35-миллиметровой пленки, с которой вы соскребли эмульсию в двух очень близких друг к другу и узких линиях, вы увидите прямое доказательство, что свет это волна. Если вы никогда этого не делали, стоит попытаться (вы можете использовать много вещей вместо пленки, таких как проволочная сетка из кофейной машины). Картина, которую вы увидите, когда лазерный луч пройдет через щели в пленке и упадет на экран, состоит из светлых и темных полос, как показано на Рис. 4.1, и объяснение этого рисунка основывается на главном свойстве волн. Волны на воде проще всего увидеть, так что сначала объясним существенные особенности волн на большом спокойном озере, а затем применим наши представления к свету.

Водяные волны возмущают плоскую поверхность озера, создавая области, где уровень воды выше, чем обычно, и области, где он ниже, чем обычно. Самая высокая часть волны называется ее гребнем (или пиком ), а наинизшая впадиной . Типичная волна содержит периодическую последовательность: гребень следует за впадиной, следующей за гребнем, и так далее. Если две волны направляются навстречу друг другу, – если, например, вы и я кидаем каждый по булыжнику в озеро недалеко друг от друга, – то когда они пересекаются, возникает важный эффект, известный как интерференция, что показано на Рис. 4.2а.

 

 

Рис 4.1 Лазерный свет, проходя через две щели, вытравленные каждая на черной пленке, дает интерференционную картину на приемном экране, показывая, что свет это волна.

 

Когда гребень одной волны и гребень другой пересекаются, высота воды как раз возрастает, становясь равной сумме высот двух гребней. Аналогично, когда впадина одной волны пересекается со впадиной другой волны, понижение уровня воды становится больше, составляя сумму двух понижений. И имеется наиболее важная комбинация: когда гребень одной волны пересекает впадину другой, они стремятся погасить друг друга, так как гребень пытается поднять воду вверх, тогда как впадина пытается опустить ее вниз. Если высота гребня одной волны равна глубине впадины другой, будет полная компенсация при их пересечении, так что вода в этом месте совсем не будет двигаться.

 

Те же принципы объясняют картину, которую создает свет, когда он проходит через две щели, как на Рис. 4.1. Свет это электромагнитная волна; когда он проходит через две щели, он распадается на две волны, которые направляются к экрану. Как и в обсуждавшемся только что случае двух водяных волн, две волны света интерферируют друг с другом. Когда они достигают произвольной точки на экране, то иногда обе волны находятся на их гребнях, создавая на экране яркое пятно; иногда обе волны находятся в их впадинах, также создавая яркое пятно; но иногда одна волна находится на ее гребне, а другая в ее впадине и они уничтожаются, делая эту точку экрана темной. Мы проиллюстрировали это на Рис. 4.2b.

Когда движение волны анализируется в математических деталях, включая случаи частичных взаимопогашений волн, находящихся на различных стадиях между гребнями и впадинами, то можно показать, что яркие и темные пятна объединяются в полосы, изображенные на Рис. 4.1. Яркие и темные полосы, следовательно, являются явным знаком, что свет это волна, проблема, которая всегда горячо обсуждалась с тех пор, как Ньютон заявил, что свет это не волна, а, напротив, он создается потоком частиц (большим числом в единицу времени).

 

(а) (b)

Рис 4.2 (а) Перекрывание водяных волн создает интерференционную картину; (b) Перекрывание световых волн создает интерференционную картину.

 

Более того, этот анализ равно применим к любым видам волн (световая волна, волна на воде, звуковая волна, что пожелаете), и поэтому интерференционные картинки обеспечивают метафорический дымящийся пистолет: вы знаете, что вы имеете дело с волной, если, когда она вынуждена проходить через две щели с правильно подобранным размером (определяемым расстоянием между гребнями и впадинами волны), итоговая картинка интенсивности выглядит как на Рис. 4.1 (с яркими областями, представляющими высокую интенсивность, и темными областями с низкой интенсивностью).

В 1927 году Клинтон Дэвиссон и Лестер Гермер направили луч электронов – индивидуальных сущностей без всякой видимой связи с волнами – на кусочек кристалла никеля; детали нас не должны интересовать, но что важно, так это то, что этот эксперимент эквивалентен обстрелу лучом электронов барьера с двумя щелями. Когда экспериментаторы позволили электронам, которые проходили через щели, пролететь вперед к фосфорному экрану, где их место столкновения регистрировалось слабой вспышкой (такой же вид вспышек отвечает за картинку на вашем телевизионном экране), результаты оказались ошеломительными. Полагая электроны маленькими шариками или пульками, вы, естественно, ожидали, что положения их столкновений с экраном сформируют линии за двумя щелями, как показано на Рис. 4.3а. Но это не то, что нашли Дэвиссон и Гермер. Их эксперимент произвел данные, схематически показанные на Рис. 4.3b: положения соударений электронов с экраном заполняют интерференционную картинку, характеризующую волны. Дэвиссон и Гермер нашли дымящийся пистолет. Они показали, что луч отдельных электронов должен быть, неожиданно, одним из видов волн .

 

(а) (b)

Рис 4.3 (а) Классическая физика предсказывает, что электроны, падающие на барьер с двумя щелями, произведут две яркие полосы на детекторе, (b) Квантовая физика предсказывает, а эксперимент подтверждает, что электроны будут производить интерференционную картинку, показывая, что они обладают волновыми свойствами .

 

Далее, вы можете подумать, что это не есть особый сюрприз. Вода состоит из молекул Н2О, но волны воды возникают, когда многие молекулы движутся согласованным образом. Одна группа молекул Н2О движется вверх в одном месте, тогда как другая группа движется вниз в соседнем месте. Возможно, результаты, приведенные на Рис. 4.3, показывают, что электроны, как и молекулы Н2О, иногда могут двигаться согласованно, создавая в своем общем, макроскопическом движении присущие волнам картинки. Несмотря на то, что. на первый взгляд, это кажется обоснованным предположением, реальная история оказалась намного более неожиданной.

Мы сначала представляли, что поток электронов непрерывно исторгается из электронной пушки на Рис. 4.3. Но мы можем уменьшить настрой пушки так, что она будет выстреливать все меньше и меньше электронов каждую секунду; фактически, мы можем уменьшить его совсем, так что она будет испускать, скажем, один электрон каждые десять секунд. При достаточном терпении мы можем проводить этот эксперимент в течение длительного периода времени и фиксировать положения соударений каждого индивидуального электрона, который прошел через щели. Рис. 4.4а – 4.4с показывают итоговые обобщенные данные после часа, половины дня и полного дня. В 1920-е годы изображения, подобные этим, перевернули основания физики. Мы видим, что даже индивидуальные, отдельные электроны, двигаясь к экрану независимо, отдельно от остальных, один за одним, выстраивают интерференционную картинку, характеризующую волны .

Это похоже на то, как если бы индивидуальная молекула Н2О каким- то образом стала себя вести подобно водяной волне. Но как, о боги, такое может быть? Волновое движение кажется коллективным свойством, которое не имеет смысла, когда применяется к отдельным идивидуальным составляющим. Если каждые несколько минут индивидуальные зрители в белом встают и садятся по-отдельности, независимо, волна не возникнет. Более того, интерференция волн, кажется, требует, чтобы волна отсюда пересеклась с волной оттуда . Но как вообще может быть интерференция применима к отдельной, индивидуальной, обособленной части целого? Тем не менее, каким-то образом, как это засвидетельствовано в интерференционных данных на Рис.4.4, даже если индивидуальные электроны являются мельчайшими частицами материи, каждая и любая также обладает волновым характером.

 

 

(а) (b) (c)

Рис 4.4 Электроны, выстреливающиеся один за одним в сторону щелей, создают интерференционную картину точка за точкой. На (а) – (с) мы иллюстрируем, как указанная картина формируется с течением времени.

 

Вероятность и законы физики

Если индивидуальный электрон также и волна, то что именно колеблется? Эрвин Шредингер рассмотрел это в первой гипотезе: возможно, что материал, из которого сделаны электроны, может размазываться в пространстве, и эта размазанная электронная эссенция и колеблется. Частица электрон с этой точки зрения должна быть резким сгущением в электронном тумане. Однако, быстро было понято, что такое предположение не может быть верным, поскольку даже волна резко заостренной формы – подобная гигантской приливной волне – в конечном счете расплывается. И если заостренная электронная волна распространяется, мы можем ожидать найти часть отдельного электрического заряда электрона здесь или часть его массы там. Чего мы никогда не делаем. Если мы локализуем электрон, мы всегда находим всю его массу и весь его заряд сконцентрированными в мельчайшей, подобной точке области. В 1927 году Макс Борн выдвинул другое предположение, которое оказалось решающим этапом, побудившим физику ввести радикально новую область. Он объявил, что волна не есть размазанный электрон, она не есть и что-либо, с чем когда-либо ранее сталкивались в науке. Волна, предположил Борн, есть волна вероятности .

Чтобы понять, что это означает, нарисуем моментальный снимок водяной волны, который показывает области высокой интенсивности (вблизи гребней и впадин) и области низкой интенсивности (вблизи плоских переходных областей между гребнями и впадинами). Чем выше интенсивность, тем больший потенциал имеет водяная волна для оказания силового воздействия на находящийся рядом корабль или прибрежные структуры. Волна вероятности в представлении Борна также имеет области высокой и низкой интенсивности, но значение, которое он приписывал этому виду волны, неожиданное: размер волны в данной точке пространства пропорционален вероятности, что электрон находится в этой точке пространства . Места, гда вероятностная волна велика, это места, где электрон наиболее легко может быть найден. Места, гда вероятностная волна мала, это места, где электрон найти маловероятно. И места, где вероятностная волна равна нулю, это места, где электрон не будет найден.

Рис. 4.5 дает "моментальный снимок" вероятностной волны с отметками, подчеркивающими борновскую вероятностную интерпретацию. Хотя, в отличие от фотографии водяной волны, этот снимок не может в действительности быть сделан камерой. Никто никогда не наблюдал непосредственно вероятностную волну, и традиционные квантовомеханические объяснения говорят, что никто никогда и не будет. Вместо этого мы используем математические уравнения (разработанные Шредингером, Нильсом Бором, Вернером Гейзенбергом, Полем Дираком и другими), чтобы вычислить, на что должна быть похожа волна вероятности в данной ситуации. Затем мы проверяем такие теоретические расчеты путем сравнения их с экспериментальными результатами следующим образом. После расчета искомой вероятностной волны для электрона в данной экспериментальной ситуации, мы выполняем идентичную расчетной ситуации версию эксперимента снова и снова с нуля, каждый раз фиксируя измеренное положение электрона.

 

 

Рис 4.5 Вероятностная волна частицы, такой как электрон, дает нам вероятность нахождения частицы в том или ином месте. <Надпись слева: Наиболее вероятное положение; Надпись справа: Следующее более вероятное положение; Надпись сверху: Третье более вероятное положение>.

 

В отличие от того, чего ожидал бы Ньютон, идентичные эксперименты и стартовые условия не обязательно приводят с идентичным измерениям. Вместо этого наши измерения дают большое число измеренных положений. Иногда мы находим электрон здесь, иногда там, а довольно часто мы находим его след вон там. Если квантовая механика правильна, число случаев, когда мы находим электрон в данной точке, должно быть пропорционально величине (на самом деле, квадрату величины) вычисленной нами вероятностной волны в этой точке. Восемьдесят лет экспериментов показали, что предсказания квантовой механики подтверждаются с впечатляющей точностью.

Только часть волны вероятности электрона показана на Рис. 4.5: в соответствии с квантовой механикой каждая вероятностная волна простирается по всему пространству, через всю вселенную.[47]Хотя во многих случаях волна вероятности частицы быстро спадает почти до нуля вне некоторой малой области, что свидетельствует об огромной вероятности, что частица находится в этой области. В таких случаях часть вероятностной волны за пределами Рис. 4.5 (часть, простирающаяся по оставшейся области вселенной) оказывается очень похожей на части вблизи краев рисунка: спокойная плоскость со значением вблизи нуля.Тем не менее, поскольку вероятностная волна где-нибудь в галактике Андромеды имеет ненулевое значение, не важно, насколько малое, имеется исчезающий, но реальный – ненулевой – шанс, что электрон может быть найден там.

Итак, успех квантовой механики заставляет нас признать, что электрон, составляющая материи, которую мы обычно рассматриваем как занимающую ничтожную, подобную точке область пространства, также имеет описание, включающее волну, которая, наоборот, распространена по целой вселенной. Более того, в соответствии с квантовой механикой это корпускулярно-волновое слияние присуще всем составным частям природы, не только электронам: протоны одновременно подобны частицам и волнам; нейтроны одновременно подобны частицам и волнам, и эксперименты в начале 1900х годов даже установили, что свет – который демонстративно вел себя как волна, как на Рис. 4.1, – также может быть описан в терминах подобных частицам составляющих, маленьких "пучков света", названных фотонами, упоминавшимися ранее.[48]Привычные электромагнитные волны, испускаемые стоваттной лампочкой, например, могут быть с одинаковым успехом описаны в терминах иcпускаемых лампочкой примерно ста миллиардов миллиардов фотонов ежесекундно. В квантовом мире мы обучились тому, что любая вещь имеет как корпускулярные, так и волновые свойства.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.