Сделай Сам Свою Работу на 5

Умножение вектора на число.





Опр. 10. Произведением вектора на скаляр k называется вектор

= k = k,

имеющий длину ka, и направление, которого:

1. совпадает с направлением вектора , если k > 0;

2. противоположно направлению вектора , если k < 0;

3. произвольно, если k = 0.

Свойства умножения вектора на число.

1о. (k + l) = k + l .

k( + ) = k + k .

2o. k(l ) = (kl) .

3o. = , (–1) × = – , 0 × = .

Свойства векторов.

Опр. 11.Два вектора и называются коллинеарными, если они расположены на параллельных прямых или на одной прямой.

Нулевой вектор коллинеарен любому вектору.

Теорема 1. Два ненулевых вектора и коллинеарны, Û когда они пропорциональны т.е.

= k , k – скаляр.

Опр. 12. Три вектора , , называются компланарными, если они параллельны некоторой плоскости или лежат в ней.

Теорема 2. Три ненулевых вектора , , компланарны, Û когда один из них является линейной комбинацией двух других, т.е.

= k + l , k ,l– скаляры.

Проекция вектора на ось.

Теорема 3.Проекция вектора на ось (направленная прямая) l равна произведению длины вектора на косинус угла между направлением вектора и направлением оси, т.е. = a × cos a, a = Ð( , l).



рис.3.

КООРДИНАТЫ ВЕКТОРА

Опр. 13. Проекции вектора на координатные оси Ох, Оу, Оz называются координатами вектора. Обозначение: {ax, ay, az}.

Длина вектора:

Пример:Вычислить длину вектора .

Решение:

Расстояние между точками и вычисляется по формуле: .

Пример:Найти расстояние между точками М (2,3,-1) и К (4,5,2).

Действия над векторами в координатной форме.

Даны векторы ={ax, ay, az} и ={bx, by, bz}.

1. ( ± )={ax ± bx, ay ± by, az ± bz}.

2. l ={lax, lay, laz}, где l – скаляр.

Скалярное произведение векторов.

Определение:Под скалярным произведением двух векторов и

понимается число, равное произведению длин этих векторов на косинус угла между ними, т.е. = , - угол между векторами и .

Свойства скалярного произведения:

1. × =

2. ( + ) =

3.

4.

5. , где – скаляры.

6. два вектора перпендикулярны (ортогональны), если .

7. тогда и только тогда, когда .

Скалярное произведение в координатной форме имеет вид: ,где и .

Пример:Найти скалярное произведение векторов и



Решение:

Векторное проведение векторов.

Определение: Под векторным произведением двух векторов и понимается вектор, для которого:

-модуль равен площади параллелограмма, построенного на данных векторах, т.е. , где угол между векторами и

-этот вектор перпендикулярен перемножаемым векторам, т.е.

-если векторы неколлинеарны, то они образуют правую тройку векторов.

Свойства векторного произведения:

1.При изменении порядка сомножителей векторное произведение меняет свой знак на обратный, сохраняя модуль, т.е.

2.Векторный квадрат равен нуль-вектору, т.е.

3.Скалярный множитель можно выносить за знак векторного произведения, т.е.

4.Для любых трех векторов справедливо равенство

5.Необходимое и достаточное условие коллинеарности двух векторов и :

Векторное произведение в координатной форме.

Если известны координаты векторов и ,то их векторное произведение находится по формуле:

Тогда из определения векторного произведения следует, что площадь параллелограмма, построенного на векторах и , вычисляется по формуле:

Пример:Вычислить площадь треугольника с вершинами (1;-1;2), (5;-6;2), (1;3;-1).

Решение: .

, , тогда площадь треугольника АВС будет вычисляться следующим образом:

,

Смешанное произведение векторов.

Определение:Смешанным (векторно-скалярным) произведением векторов называется число, определяемое по формуле: .

Свойства смешанного произведения:

1.Смешанное произведение не меняется при циклической перестановке его сомножителей, т.е. .

2.При перестановке двух соседних сомножителей смешанное произведение меняет свой знак на противоположный, т.е. .



3.Необходимое и достаточное условие компланарности трех векторов : =0.

4.Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком плюс, если эти векторы образуют правую тройку, и со знаком минус, если они образуют левую тройку, т.е. .

Если известны координаты векторов ,то смешанное произведение находится по формуле:

Пример:Вычислить смешанное произведение векторов .

Решение:

Базис системы векторов.

Определение.Под системой векторов понимают несколько векторов, принадлежащих одному и тому же пространству R.

Замечание. Если система состоит из конечного числа векторов, то их обозначают одной и той же буквой с разными индексами.

Пример.

Определение. Любой вектор вида = называется линейной комбинацией векторов . Числа -коэффициентами линейной комбинации.

Пример. .

Определение. Если вектор является линейной комбинацией векторов , то говорят, что вектор линейно выражается через векторы .

Определение. Система векторов называется линейно-независимой, если ни один вектор системы не может быть как линейная комбинация остальных векторов. В противном случае систему называют линейно-зависимой.

Пример. Система векторов линейно-зависима, т. к. вектор .

Определение базиса.Система векторов образует базис, если:

1) она линейно-независима,

2) любой вектор пространства через нее линейно выражается.

Пример 1.Базис пространства : .

2. В системе векторов базисом являются векторы: , т.к. линейно выражается через векторы .

Замечание.Чтобы найти базис данной системы векторов необходимо:

1) записать координаты векторов в матрицу,

2) с помощью элементарных преобразований привести матрицу к треугольному виду,

3) ненулевые строки матрицы будут являться базисом системы,

4) количество векторов в базисе равно рангу матрицы.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.